Abstract

Abstract The selective elimination of malignant cells via the apoptotic process continues to be the cornerstone of modern anti-cancer therapy regimens. Therefore, in vitro screening approaches aimed at identifying clinically useful apoptosis inducers remain critically important. Recently, phenotypic screening methods have enjoyed a resurgence due to more biologically complex and relevant cell models as well as advances in chemical proteomics which have allowed for more successful target identification. As a consequence, novel probes and tools with enabling attributes are required to fully realize this discovery potential. In an effort to address this unmet need, we have developed a bioluminescent and homogeneous annexin V binding assay for the assessment of apoptosis. Unlike traditional fluorescent annexin V methodology, the “no-wash” reagent employed in this new assay utilizes binary components of a novel luciferase separately fused to annexin V. The annexin V-luciferase subunit fusion pairs have low intrinsic affinity for each other and thus produce no or low luminescence until phosphatidylserine (PtdSer) exposure drives annexin-fusion pair oligimerization. Ultimately, this protein:protein interaction on or near the cell surface reconstitutes full luciferase activity causing an increase in luminescence in the presence of a luciferase substrate. A separate, pro-fluorescent, multiplexed component of the reagent further delineates differences in annexin positivity based on maintenance or loss of membrane integrity corresponding to apoptosis or necrosis, respectively. We validated this method using a panel of diverse cancer cell lines (U2-OS, DLD-1, HeLa, Jurkat, K562, A549, and PC-3), representing both attachment-dependent and -independent morphologies after dose-dependent challenge with intrinsic (bortezomib, panobinostat, staurosporine, and paclitaxel) and extrinsic (rhTRAIL) inducers of apoptosis as well as agents known to produce primary necrosis (ionomycin and digitonin). Caspase activation data was also collected in parallel plates at endpoint as a well-validated and sensitive orthogonal comparator. The bioluminescent annexin V method proved sufficiently robust in 384 well microplate formats to routinely produce Z’ > 0.7 and rank-order potencies in good agreement with caspase activation values. In addition to this microplate functionality, the reagent allowed for sensitive, facile imaging of apoptotic induction in living cells using different imaging platforms. Taken together, the method and reagent should provide unparalleled flexibility with regard to live cell apoptosis detection in both conventional microplate and high content-like imaging formats and advance the pace of new chemical entity discovery. Citation Format: Kevin Kupcho, John Shultz, Andrew Niles, Wenhui Zhou, Robin Hurst, Jim Hartnett, Thomas Machleidt, Terry Riss, Dan Lazar, Jim Cali. A bioluminescent, homogeneous annexin V microplate-based method for assessment of apoptosis. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 3505.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call