Abstract

Abstract Tumor Treating Fields (TTFields) are low intensity, alternating intermediate frequency (200kHz) electrical fields that extend survival of glioblastoma patients receiving maintenance temozolomide (TMZ) chemotherapy. How TTFields exert efficacy on cancer cells over normal cells, or interact with TMZ is unclear. Primary cilia are microtubule-based organelles triggered by extracellular ligands, mechanical and electrical field stimulation, and are capable of promoting cancer growth and TMZ chemoresistance. We found in both low and high grade patient glioma cell lines that TTFields ablated cilia within 24 hours. Halting TTFields treatment led to recovered frequencies of elongated cilia. Cilia on normal primary astrocytes, neurons and multiciliated ependymal cells were less affected by TTFields. The TTFields-mediated loss of glioma cilia was partially rescued by chloroquine pretreatment, suggesting the effect is in part due to autophagy activation. We also observed death of ciliated cells during TTFields by live imaging. Notably, TMZ-induced stimulation of ciliogenesis in both adherent cells and gliomaspheres was blocked by TTFields. Moreover, the inhibitory effects of TTFields and TMZ on tumor cell recurrence correlated with the relative timing of TMZ exposure to TTFields and ARL13B positive cilia. Finally, TTFields disrupted cilia in patient tumors treated ex vivo. Our findings suggest TTFields efficacy may depend on the degree of tumor ciliogenesis and relative timing of TMZ treatment. Citation Format: Ping Shi, Jia Tian, Brittany Ulm, Julianne Mallinger, Habibeh Khoshbouei, Loic Deleyrolle, Matthew Sarkisian. Tumor treating fields suppression of ciliogenesis enhances temozolomide toxicity [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 3252.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.