Abstract

Cardiomyocyte renewal occurs very slowly in adult mammals, and little is known of the genetic basis of cardiac regeneration. Twist is a highly conserved bHLH transcription factor responsible for Drosophila mesoderm formation during embryogenesis. Recent studies have shown that Twist protein is essential for muscle regeneration in adult Drosophila, but the potential role of Twist in the mammalian heart has not been explored. There are two Twist genes in vertebrates, Twist-1 and -2. We show that Twist-1 and -2 are expressed in epicardium and interstitial cells but not in differentiated cardiomyocytes in mice. To understand the potential function of Twist-dependent lineages in the adult heart, we generated inducible Twist2CreERT2; ROSA26-tdTomato reporter mice. By treating these mice with tamoxifen at 8 weeks of age, we observed progressive labeling of various cell types, such as epithelial cells, cardiac fibroblasts, and cardiomyocytes in the heart. We isolated Tomato-positive nonmyocytes from these mice and found that these cells can differentiate into cardiomyocytes and other cell types in vitro. Furthermore, cardiac-specific deletion of both Twist1 and Twist2 resulted in an age-dependent lethal cardiomyopathy. These findings reveal an essential contribution of Twist to long-term maintenance of cardiac function and support the concept of slow, lifelong renewal of cardiomyocytes from a Twist-dependent cell lineage in the adult heart.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call