Abstract

Background: Rho kinases (ROCKs) are serine-threonine protein kinases that regulate various cellular functions. There is increasing evidence that the RhoA/ROCK pathway plays an important pathophysiological role in cardiovascular diseases. However, direct evidence of which ROCK isoforms or target tissues are involved in the atherogenic process is still lacking. Objective: The aim of this study was to determine the effect of ROCK1 deficiency on atherogenesis and how ROCK1 affects key atherosclerosis-related macrophage function such as lipid uptake and chemotaxis. Methods: We utilized ROCK1 −/− mice and the atherosclerosis-prone apolipoprotein E knockout (apoE −/− ) mice or low-density lipoprotein receptor knockout (LDLR −/− ) mice to investigate the role of ROCK1 in the pathogenesis of atherosclerotic plaque formation. Bone marrow-derived macrophages from ROCK1 −/− and ROCK1 +/+ mice were used to investigate acetylated (Ac)LDL-mediated foam cell formation and chemotaxis. Results: Compared to atherosclerosis-prone apoE −/− mice, apoE −/− ROCK1 +/− mice had substantially less fatty streaks foam cells and atherosclerosis (77.0 ± 12.9 × 10 3 μm 2 versus 166.4 ± 14.6 × 10 3 μm 2 , P < 0.01). Atherosclerotic lesions were reduced also in LDLR −/− mice, whose bone marrow were replaced with bone marrow derived from ROCK1 −/− mice compared to ROCK1 +/+ recipients (181.5 ± 15.6 × 10 3 μm 2 versus 448.5 ± 33.3 × 10 3 μm 2 , P < 0.05). Bone marrow-derived ROCK1-deficient macrophages exhibited impaired chemotaxis to monocyte chemotactic protein-1 and showed reduced ability to take up lipids and to develop into foam cells when exposed to modified low density lipoprotein. Conclusion: These findings indicate that ROCK1 in macrophages is a critical mediator of foam cell formation, macrophage chemotaxis and atherogenesis, and suggest that macrophage ROCK1 may be an important therapeutic target for vascular inflammation and atherosclerosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.