Abstract

Introduction: Oxidized proteins have been implicated in the development and progression of atherosclerosis. Malondialdehyde (MDA)-acetaldehyde (AA) adduct (MAA), is produced and is the dominant epitope formed following incubation of proteins with the oxidative product MDA. Additionally, these MAA-modified proteins have been detected in JCR atherosclerotic rat aortic tissue and the human model of atherosclerosis. MAA-modified proteins have been implicated in the progression of atherosclerotic disease. Objective: The purpose of this study was to evaluate the association of MAA-adducted proteins and circulating IgM, IgG and IgA anti-MAA antibody isotypes to patients with normal coronary arteries and patients with stable and unstable atherosclerotic lesions. Methods: Over a six-month period, serum samples from normal controls (n=82), stable angina (n=42), acute myocardial infarction (AMI) (n=41), and coronary artery bypass graph surgery (CABG) (n=72) patients were collected and tested for the presence of anti-MAA antibody isotypes. All samples were collected prior to heparinization, intervention and/or bypass pump initiation. Aortic punch biopsies from CABG patients were subjected to immunohistochemical (IHC) staining using a monoclonal mouse anti-MAA antibody and detection by confocal microscopy. Results: Normal control patients had a significantly lower circulating anti-MAA IgG (97 ng/ml, SE=6.9) and IgA (82 ng/ml) as compared to patients with coronary artery disease (p<0.001). AMI patients had a significantly increased level of circulating anti-MAA IgG antibodies (242 ng/ml, SE=30.5) compared to stable angina (186 ng/ml, SE= 20.7) (p<0.04) or CABG patients (163 ng/ml, SE=14.6) (p<0.004). Serum samples from patients with CABG had significantly increased levels of circulating anti-MAA IgA antibodies (2495 ng/ml, SE=334) compared to stable angina (367 ng/ml, SE=64.4) (p<0.001) or AMI patients (361 ng/ml, SE=65.0) (p<0.001). Anti-MAA IgM antibodies were significantly different across the groups in similar fashion to IgG results. Confocal microscopy of aortic punch biopsies confirms an increased level of the MAA-adducts within the interstitial spaces of the aorta media. Conclusions: These data show that MAA-modified proteins are present in atherosclerotic tissues and there is a significant increase in the levels of circulating anti-MAA antibodies (IgM, IgG and IgA) in patients with coronary artery disease. Anti-MAA IgM and IgG phenotypes are significantly increased in patients who present with an AMI compared to normal coronary artery and stable CAD patients, whereas, the anti-MAA IgA phenotype is significantly increased in patients who present for CABG compared to all other groups. The immunoglobulin phenotype (IgM, IgG and/or IgA) is hypothesized secondary to differences in antigenic sensitization (Th1 vs. Th2) of MAA-modified proteins in diseased tissue. Implications: Anti-MAA IgM, IgG and IgA antibody isotypes and MAA-modified proteins may serve as biomarkers for subclinical atherosclerotic disease (IgM, IgG and IgA) as well as differentiate CAD patients who have stable (IgA) and unstable (IgG) atherosclerotic plaques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call