Abstract

Abstract The Broad/IBM Cancer Resistance Project has partnered with Broad Genomics to pilot the use of cutting edge sequencing technology for the analysis of cell free DNA in blood biopsies. Working closely with the Broad's Cancer Program, Broad Genomics has developed a suite of liquid biopsy sequencing products designed to provide optimal flexibility in conducting research studies with a broad range of applications including; biomarker discovery, treatment resistance monitoring, and detection of minimal residual disease (MRD) post-surgery. Cell-free DNA is extracted from the blood, and a dual unique-molecular-indexed library is created. From this library, low coverage whole genome (ultra-low-pass 0.1x coverage) data is generated to survey sample quality and evaluate the tumor fraction in the liquid specimen. Utilizing the same library, additional assays can be selected for processing based on the research aim (Targeted Panel Assays, MRD Detection or Whole Exomes). Since our approach utilizes the same genomic material for whole genome and targeted sequencing assays, it is possible to maximize the information learned from each valuable and limited liquid biopsy specimen. Our study design takes advantage of the discovery potential of combined tissue-based sequencing and serial liquid biopsy analysis to elucidate mechanisms of cancer resistance by tracking the evolution of clonal and subclonal populations in patients samples over time. This collaboration will utilize the ultra-low-pass sequencing and whole exome sequencing together with custom analysis pipelines to correlate the genomic events with patient clinical data. We aim to process 3,000 samples from 1,000 patients over the next 3 years. To date we have processed close to 500 samples through the ultra-low-pass pipeline and 100 samples through the whole exome sequencing pipeline (results to be provided).The ability to successfully investigate treatment resistant cancers from non-invasive liquid biopsies presents new opportunities for identifying markers, understanding dynamics and monitoring tumor dissemination and clonal evolution. Citation Format: Gad Getz, Carrie Cibulskis, Ignaty Leshchiner, Megan Hanna, Dimitri Livitz, Kara Slowik, Chaya Levovitz, Filippo Utro, Kahn Rhrissorrakrai, Denisse Rotem, Gregory Gydush, Sarah C. Reed, Justin Rhoades, Gavin Ha, Samuel S. Freeman, Christopher Lo, Mark Fleharty, Justin Abreu, Katie Larkin, Michelle Cipicchio, Brendan Blumenstiel, Matt DeFelice, Jonna Grimsby, Susanna Hamilton, Niall Lennon, Viktor A. Adalsteinsson, Laxmi Parida. Broad/IBM Project: Discovery of treatment resistance mechanisms through use of liquid biopsy genomics services [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr 3001.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.