Abstract

Abstract Phosphorus, despite its abundance in the human body, is rarely found in drug molecules, with clinical utility limited to a few phosphonic or bisphosponic acid-based medicines and several phosphonate or phosphate-containing prodrugs. Concerns about poor cell penetration, low oral bioavailability, or biological instability have limited application of these functional classes in drug design. In our efforts to discover pharmaceuticals with novel functionality, we introduced a neutral, stable phosphine oxide moiety as a unique hydrogen-bond acceptor in the design of anaplastic lymphoma kinase (ALK) inhibitors. ALK is a receptor tyrosine kinase first identified as a chromosomal rearrangement (NPM-ALK fusion gene) in anaplastic large cell lymphoma (ALCL) and subsequently detected as an alternate fusion oncogene (EML4-ALK) in a subset of non-small cell lung cancers (NSCLC). Crizotinib, the first approved ALK inhibitor, has demonstrated impressive clinical benefit in EML4-ALK (ALK+) NSCLC patients. Drug resistance, however, emerges rapidly and point mutations within the kinase domain have been identified as a major resistance mechanism. With the specific objective to identify more potent ALK inhibitors with pan-inhibitory activity against crizotinib-resistant ALK mutants, we designed and tested a series of phosphine oxide-based compounds culminating in the identification of the clinical candidate AP26113. AP26113 exhibited 10-fold greater potency than crizotinib against ALK-positive ALCL and NSCLC cell lines, and effectively inhibited clinically relevant crizotinib-resistant mutants. AP26113 displayed ∼100-fold increased selectivity for ALK-positive cells over ALK-negative cell lines while maintaining selectivity over insulin receptor tyrosine kinase receptors. Consistent with the in vitro profile, AP26113 demonstrated oral efficacy in multiple ALK+ mouse models including Karpas-299 (ALCL), H3122 (NSCLC), and Ba/F3 cells expressing crizotinib resistant mutants including G1269S and L1196M. Finally, AP26113 exhibited excellent drug-like properties including high cell permeability and solubility, moderate cross-species protein binding, and inactivity toward major cytochrome P450 iso-enzymes and hERG ion channels. Medicinal chemistry efforts leading to the discovery of this potent pan-ALK inhibitor, including design strategy, chemical series evolution, and DMPK optimization will be presented. AP26113 is currently in a global phase 2 registration trial (NCT02094573) in patients with locally advanced or metastatic NSCLC who test positive for the ALK oncogene and were previously treated with crizotinib. Citation Format: Wei-Sheng Huang, Feng Li, Lisi Cai, Yongjin Xu, Sen Zhang, Scott D. Wardwell, Yaoyu Ning, Anna Kohlmann, Tianjun Zhou, Emily Y. Ye, Xiaotian Zhu, Narayana I. Narasimhan, Tim Clackson, Victor M. Rivera, David Dalgarno, William C. Shakespeare. Discovery of AP26113, a potent, orally active inhibitor of anaplastic lymphoma kinase and clinically relevant mutants. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 2827. doi:10.1158/1538-7445.AM2015-2827

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.