Abstract

Introduction: Epidemiological evidence supports an important association between PM2.5 exposure and hypertension. There are reports that PM2.5 induced hypertension with impaired sodium excretion, however, the mechanisms are not clear. Hypothesis: We hypothesize that PM2.5, via increased ROS levels, increased GRK4 expression, consequently impaired renal D1 receptor function, and lead to hypertension. Methods: We used Sprague-Dawley (SD) rats with in-vivo PM2.5 exposure, and immortalized renal proximal tubule (RPT) cells from Wistar-Kyoto (WKY) rats in-vitro, which behave similarly to freshly obtained RPT cells. Results: Our present study found that long-term exposure of PM2.5 caused hypertension and impaired renal sodium excretion, which might be ascribed to lower D1 receptor expression and higher D1 receptor phosphorylation, accompanied with higher GRK4 expression. The in-vivo results were confirmed in in-vitro study, i.e. PM2.5 increased basal Na+-K+ ATPase activity, decreased D1 receptor mediated inhibitory effect on Na+-K+ ATPase activity, decreased D1 receptor expression and increased D1 receptor phosphorylation in RPT cells. The downregulation of D1 receptor expression and function might be due to higher GRK4 expression, because down-regulation of GRK4 by siRNA reversed the D1 receptor expression and function. Due to the role of ROS on D1 receptor dysfunction, we checked ROS levels, and found plasma ROS levels were higher in PM2.5 treated SD rats. Inhibition of ROS by tempol reduced blood pressure and increased sodium excretion in PM2.5 treated SD rats, accompanied by increased the lower D1 receptor expression, and decreased the hyperphosphorylated D1 receptor and GRK4 expression. Conclusions: Long-term exposure of PM2.5 increases blood pressure by decreased D1 receptor expression and function; ROS, via regulation of GRK4 expression, is taken part in the pathogenesis of PM2.5-induced hypertension.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call