Abstract

Introduction: Adiponectin (APN) is an anti-inflammatory and anti-atherogenic adipokine that is strongly correlated with circulating HDL levels. However, its role in macrophage lipid metabolism, a crucial process in atherogenesis, remains poorly investigated. We examined the effect of APN on cholesterol efflux from human THP-1 macrophages, elucidated its kinetics, and investigated its role in HDL biogenesis. Methods: APN dose-dependent (0.1 to 60 μM) and time-dependent (0.5 to 24 hours) cholesterol efflux studies were performed in 3 [H]-cholesterol labeled human THP-1 macrophages in the presence of apoA-I. Following efflux studies, the HDL fractions within media were concentrated (10kDa cut-off filter) and subjected to analytical FPLC and 2D-PAGGE technique to reveal HDL species. Results: APN stimulated ABCA1-mediated cholesterol efflux in a dose-dependent and time-dependent manner. Kinetics analysis revealed that increased molar doses of APN and apoA-I had similar Km efficiency of cholesterol efflux but greater velocity ( Km =3.24±0.71 μM, Vmax =4.90±0.07 efflux/6h) when compared to apoA-I alone ( Km =3.33±0.57 μM, Vmax =3.83±0.24 efflux/6h). Importantly, once APN was tested against a fixed dose of apoA-I (10 μg/mL), it promoted cholesterol efflux with Km = 0.17±0.06 μM. This was associated with a 75.7% decrease in intracellular free cholesterol in THP-1 cells in the presence of APN and apoA-I when compared to apoA-I alone (P<0.01). APN alone had no effect on the level of residual efflux (reached a level of 1%). The FPLC cholesterol profiles demonstrated that in the presence of APN and apoA-I there was increased lipidated nascent HDL (nHDL) during the process of cholesterol efflux, compared to apoA-I alone. This was associated with increased size of nHDL-apoA-1 pre-β and α species via 2D-PAGGE analyses. By immunoblotting for apoA-I and APN, APN oligomers exhibited a molecular weight range of 9 to 20 nm, appearing within the size range of nHDL-apoA-I. Conclusion: In addition to promoting macrophage cholesterol efflux in vitro , APN can modulate HDL-apoA-I biogenesis, by increasing the generation of nHDL particles. These findings suggest that APN may be of potential therapeutic value in the modulation of HDL’s protective role in atherosclerosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.