Abstract

Background: Excessive lipid accumulation by macrophages plays a crucial role in atherosclerosis. Foam cells are generated by uncontrolled uptake of modified LDL, especially oxidized LDL (oxLDL), and/or impaired cholesterol efflux mediated by ATP-binding cassette (ABC) family transporters, ABCA-1 and ABCG-1. Shockwave, elicited by transient pressure disturbance, have been used for extracorporeal lithotripsy or for treating musculoskeletal disorders. Our current study suggests an evidence that shockwave may have anti-atherogenic effect by inhibiting foam cell formation. Methods/Results: Murine peritoneal macrophages were exposed to shockwaves at 0.04 mJ/mm 2 with 1000 impulses, lysed after 6, 18 and 24 hours, and tested for expression of ABCA-1 and ABCG-1. The western blot showed that shockwave induced 2.0-2.8 fold increase of ABCA-1 and ABCG-1 within 18-24 hours. mRNA levels of ABCA-1 and ABCG-1 were also increased by shockwave with 2.0 fold of peak increase in 18 hours. The increased expression of ABCA-1 and ABCG-1 was mediated by phosphorylation of ERK 1/2 (Tyr204). Western blot analysis revealed that shockwave induced phosphorylation of ERK 1/2 (Tyr204) in murine macrophages. Shockwave-induced increase of ABCA-1 and ABCG-1 was blocked by U0126 (40µM), a specific inhibitor for ERK. Oil-red O staining showed that macrophages exposed to shockwave had 25% less intracellular lipid droplets. Intracellular cholesterol measured by cholesterol oxidase and esterase revealed that macrophages exposed to shockwave had 23% less intracellular cholesterol when incubated with oxLDL (50µg/ml) for 16 hours. In vitro migration assays including modified Boyden chamber migration assay and scratch wound healing migration assay showed that macrophages exposed to shockwave had 1.2 fold more migration and had diminished migration-inhibitory effect of oxLDL. Conclusions: Shockwave reduces macrophage foam cell formation via ERK-mediated increase of ABCA-1 and ABCG-1 mediating lipid efflux and promotes macrophage migration which may induce macrophage egress from atherosclerotic lesion. Our study suggests anti-atherogenic effects of shockwave as a potential treatment modality for atherosclerosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call