Abstract

Introduction: Transforming Growth Factor Beta (TGFβ) is an important cytokine in mediating the fibrogenic response and, in particular, cardiac fibrosis. Extensive fibrosis accompanies the cardiac remodeling that occurs during development of the protein conformation-based disease caused by cardiomyocyte-specific expression of a mutant, small, heat shock-like protein and chaperone, aB crystallin (CryABR120G). During the onset of fibrosis, fibroblasts are activated to the so-called “myofibroblast” state and TGFβ binding is thought to mediate an essential signaling pathway underlying this process. Our central hypothesis is that TGFβ signaling processes that result in significant cardiac fibrosis in a mouse model of proteotoxic heart disease are mediated by cardiac fibroblasts, rather than cardiomyocytes. Here, we have partially ablated TGFβ signaling only in cardiac myofibroblasts to observe if cardiac fibrosis is reduced. Aims and Methods: The objective of this study was to understand the contributions of fibroblast-derived TGFβ signaling to the development of cardiac fibrosis in a proteotoxic mouse model that results in significant cardiac fibrosis. To test the hypothesis we partially deleted the myofibroblast specific canonical and non-canonical signaling by crossing CryAB R120G mice with Tgfbr1 or Tgfbr2 floxed mice. The double transgene containing mice were further crossed with activated myofibroblast specific Cre mice in which Cre expression was driven off the periostin promoter. Echocardiography, Masson’s Trichome staining, PCR arrays, IHC and western blots were performed to characterize the fibrotic progression in CryAB R120G transgenic mice. Results: We observed that myofibroblast-targeted partial knockdown of Tgf βr1 signaling prolonged survival, modestly reducing fibrosis and improving cardiac function . Similarly, Tgf βr2 partial knockdown prolonged survival, modestly reducing fibrosis without improving cardiac function during fibrosis development in CryAB R120G mice. Conclusion: These findings suggest that, in a model of proteotoxic heart disease, myofibroblast based TGFβ signaling in the heart may contribute to cardiac hypertrophy/dysfunction but cannot account entirely for the fibrotic response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.