Abstract
Abstract Immune checkpoint blockers (ICBs) have rendered unprecedented, durable responses in metastatic melanoma, but the heterogeneous response among patients continues to be the major obstacle for their therapeutic development. It is generally hypothesized that neoantigens derived from mutated genes are involved in tumor response to ICBs, since the latter is correlated witt mutational loads of tumors. However, direct experimental evidence showing that threshold quantity or specific properties of neoantigens drive ICB response are mostly lacking. To identify and characterize neoantigens implicated in ICB response, we have generated two UV-induced melanoma models based on the BrafV600E/Pten-knockout (Braf/PKO) and Hgf-transgenic (Hgf-tg) mouse, which displayed intrinsic resistance and high sensitivity to an anti-CTLA-4 antibody, respectively. Exome sequencing identified 216 and 291 non-synonymous mutations in the Braf/PKO and UV-Hgf melanoma cell lines, respectively. By RNA sequencing, 74 (34%) and 121 (42%) of these mutated genes were found to be expressed in each model, respectively, and there were no overlapping mutations between them. The mutations found in the “sensitive” UV-Hgf melanoma were analyzed in silico for their binding affinity to MHC-I and/or MHC-II, thus characterizing putative neoantigens. A “neo-epitope” library was generated by cloning the DNA sequences flanking non-synonymous mutations in frame with the eGFP gene in a lentiviral vector. We further showed that such eGFP-fused epitopes can be presented by the cells to induce specific T cell responses. The library will be transduced into the “resistant” Braf/PKO melanoma, which will be treated with anti-CTLA-4 in mice to identify the neoantigens required for the response. To prevent immunity against eGFP expressed by tumors, the library-transduced melanoma cells will be transplanted into the eGFP-tolerant “glowing head mice”. The results will be used to determine if one, or more, of our candidate neo-epitopes can induce a response to anti-CTLA-4. We will also analyze if the response to this ICB is an epitope-specific reaction or require multiple epitopes, which will help to identify resistance mechanisms. We anticipate that our results will provide insight into the role of neoantigens in ICB response. Moreover, our models will serve as a platform to study the specific contribution and predictive value of neoantigens for melanoma response to immunotherapy, which could help improve therapeutic strategies involving ICBs. Citation Format: Chi-Ping Day, Eva Perez-Guijarro, Rajaa El Meskini, Zoe Weaver Ohler, Maxwell Lee, Howard Yang, Suman Vodnala, Shyam Sharan, Glenn Merlino. Identification of neo-antigens driving melanoma response to immune checkpoint blockers via in vivo screening [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 2623. doi:10.1158/1538-7445.AM2017-2623
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.