Abstract

Abstract The epidermal growth factor receptor (EGFR) and insulin-like growth factor receptor-1 (IGFR) are transmembrane receptor tyrosine kinases that mediate proliferative and invasive cell signaling in cancer. Inhibition of either receptor reduces tumor growth in both mouse models and in human clinical studies. Blocking the EGFR pathway can induce compensatory activation of the IGFR pathway to drive tumor growth and IGFR inhibition can result in activation of EGFR signaling in preclinical models. Therefore, blocking both receptors simultaneously may achieve superior efficacy to blocking either pathway alone. We developed individual optimized Adnectins™ specific for blocking either EGFR or IGFR signaling and engineered them into a single protein that linked both Adnectins together to construct a bi-specific Adnectin targeting the EGFR and IGFR (EI-tandem). The bifunctional molecule blocked activation of EGFR and IGFR, inhibited both EGF and IGF-induced down-stream cell signaling (MAPK and AKT pathways) and was antiproliferative in human cancer cell lines. Potency of the EI-tandem was comparable to anti-EGFR and anti-IGFR antibodies. The EI-tandem demonstrated a synergistic inhibition of IGFR phosphorylation and down-stream cell signaling compared to Adnectins specific for only EGFR or IGFR alone. Although Adnectins bound to the EGFR at a site distinct from the clinically approved anti-EGFR antibodies cetuximab, panitumumab and nimotuzumab, they still blocked binding of EGF to the EGFR. PEGylated EI-tandem inhibited the growth of human tumor xenografts driven by both EGFR and IGFR signaling, degraded EGFR and IGFR, and reduced phosphorylation of EGFR in tumors. Treatment of mice with EI-tandem caused increases in levels of the circulating ligands TGFα and IGF1 resulting from blockade of their respective receptors and provided convenient soluble biomarkers of target suppression. These results show that a bifunctional Adnectin can confer improved biological activity compared to monospecific biologics in tumors where growth is driven by multiple growth factors. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 101st Annual Meeting of the American Association for Cancer Research; 2010 Apr 17-21; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2010;70(8 Suppl):Abstract nr 2586.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call