Abstract

Rationale: The ER stress response is activated by the accumulation of misfolded, toxic proteins in the endoplasmic reticulum (ER), and upregulates proteins that restore ER protein-folding capacity. The ER-transmembrane protein, activating transcription factor 6 (ATF6) senses ER stress and responds by transcriptionally inducing many of these genes and is thus a key component of the adaptive ER stress response. We previously showed that in the heart, ischemia activates ATF6. Furthermore, transgenic mouse hearts expressing a conditionally activated form of ATF6, and subjected to ex vivo ischemia/reperfusion, exhibited preserved heart function and smaller infarcts. Our lab also showed that by serving as a novel inducer of a global anti-oxidant gene program, endogenous ATF6 limits cardiac damage caused by reactive oxygen species during reperfusion. However, the effect of endogenous ATF6 in the failing heart is not known. Given that acute ischemia caused by occlusion of the coronary arteries is the cause of myocardial infarction (MI), we hypothesized that endogenous ATF6 limits infarct size and preserves heart function during MI. Additionally, since deleterious cardiac remodeling and heart failure can be long-term consequences of MI, we hypothesized that ATF6 can mitigate these effects. Objective/Methods: To examine the role of endogenous ATF6 in heart failure, in vivo, we used a mouse model of MI-induced heart failure in mice with a global deletion of the ATF6 gene (ATF6 KO). Infarct size was measured by TTC staining and heart function was observed via longitudinal echocardiogram. Results: We found that following infarction, ATF6 KO mouse hearts had larger infarcts compared to control. Thus, ischemic cardiac tissue in the peri-infarct region requires ATF6 to limit cardiac myocyte death. Interestingly, ejection fraction following MI decreased more over 13 weeks in ATF6 KO mice relative to control. While control and ATF6 KO mouse hearts hypertrophied to a similar degree, KO mice showed greater cardiac dilation. Conclusions: Together these findings show for the first time that endogenous ATF6 acts to preserve heart structure and function in an MI model of heart failure, suggesting that ATF6 may be a viable therapeutic target for treatment of this disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call