Abstract

Background and Purpose: After stroke restricted to the primary motor cortex (M1), it is uncertain whether network reorganization associated with motor recovery involves the periinfarct or more remote brain regions. In humans, the challenge is to recruit patients with similar lesions in size and location. Methods: We studied 16 patients with focal M1 stroke and hand paresis. Motor function and resting-state MRI functional connectivity (FC) were studied at three time points: acute (<10 days), early subacute (3 weeks), and late subacute (3 months). FC correlates of motor recovery were investigated at three spatial scales, i) ipsilesional non-infarcted M1, ii) core motor network (including M1, premotor cortex (PMC), supplementary motor area (SMA), and primary somatosensory cortex), and iii) extended motor network including all regions structurally connected to the upper limb representation of M1. Results: Hand dexterity was impaired only in the acute phase ( P =0.036). At a small spatial scale, improved dexterity was associated with increased FC involving mainly the ipsilesional non-infarcted M1 and contralesional motor regions (cM1: rho=0.732; P =0.004; cPMC: rho=0.837, P <0.001; cSMA: rho=0.736; P =0.004). At a larger scale, motor recovery correlated with the relative increase in total FC strength in the core motor network compared to the extended motor network (rho=0.71; P =0.006). Conclusions: FC changes associated with motor improvement involve the perilesional M1 and do not extend beyond the core motor network. The ipsilesional non-infarcted M1 and core motor regions could hence be primary targets for future restorative therapies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call