Abstract

Abstract Glioblastoma (GBM) is the most lethal primary malignant brain tumor with a median survival of less than two years. High levels of therapy resistance, strong cellular invasiveness and rapid cell growth demand aggressive multimodal therapies involving resection as well as radio-chemotherapy. Recent evidence has pointed to the existence of brain tumor stem cells (BTSCs), a subpopulation of human brain tumors which is thought to be responsible for tumor dissemination, relapse and chemo resistance. BTSCs have been associated with the expression of mesenchymal features as a result of epithelial-mesenchymal transition (EMT). Using high resolution proton nuclear magnetic resonance spectroscopy (1H NMR) we compared the intracellular metabolic composition of GBM cells after induction vs. inhibition of EMT as well as under stem cell or differentiated conditions. We identified that both EMT and enrichment for stemness induces the cholinic phenotype which is characterized by high intracellular levels of phosphocholine and total choline derivatives. Furthermore, interference with choline metabolism by targeting choline kinase alpha (CHKα) reversed EMT in GBM cells as we observed reduced invasiveness, clonogenicity, and expression of EMT associated genes. Taken together, interfering with choline metabolism is a powerful strategy to suppress EMT and thus target BTSCs. Moreover, the newly identified BTSC-oncometabolic network could be used to non-invasively monitor the invasive properties of glioblastomas and the success of anti-BTSC therapy. Citation Format: Katharina Koch, Rudolf Hartmann, Abigail K. Suwala, Dayana Herrera Rios, Ulf D. Kahlert, Jaroslaw Maciaczyk. Targeting brain tumor stem cells by interfering with choline metabolism: Evidence for an EMT-choline oncometabolic network [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 2496. doi:10.1158/1538-7445.AM2017-2496

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.