Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial wall elicited by accumulation of LDL and leucocytes in the subendothelium at predilection sites with disturbed laminar flow. Chemokines and their receptors appear to act as critical players in atherosclerosis as they not only direct atherogenic recruitment of leucocytes but also exert cell hemostatic functions by chemokine ligand-receptor axes and their specific or combined contributions. Atypical chemokine (C-C motif) receptor-like 2 (CCRL2) cooperates with its ligand chemerin and leukocyte-expressed chemerin receptor chemokine-like receptor 1 (CMKLR1) to regulate cell trafficking and inflammatory responses,but its role in atherosclerosis is not clear. To investigate whether CCRL2 contributes to the pathomechanism of atherogenesis, we generated CCRL2 -/- mice in hyperlipidemic atherosclerosis-prone ApoE -/- background and found that the atherosclerotic plaque area of the total aorta was significantly reduced compared with CCRL2 +/+ ApoE -/- mice on a high fat diet. The protective effect of CCRL2 deficiency was anatomically isolated primarily to the site of disturbed blood flow (D-flow) in the aortic arch but not in the descending aorta. Endothelial CCRL2 was upregulated in response to D-flow and either CCRL2 or CMKLR1 deletion reduced plaque formation. Further studies showed that CCRL2 co-localized with CMKLR1 and chemerin within the atherosclerotic aorta root. CCRL2 deficiency led to significantly less lipid deposition in aortic root, reduced CMKLR1 + leukocyte rolling on lesional vascular endothelium, diminished macrophage accumulation and foam cell formation, and polarized macrophage to an M2-like phenotype. These results demonstrate that D-flow induction of vascular CCRL2 is required for optimal formation of atherosclerotic plaques via coordinating the accumulation of CMKLR1 + monocytes/macrophages within the vascular wall, and thus identifies CCRL2 as a novel drug target to prevent or treat atherosclerosis. This work was supported by Natural Science Foundation of China (grant 81370373 to L.Z. and 31300781 to C.T.) Key Words: atherosclerosis, CCRL2, chemerin, macrophage
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Arteriosclerosis, Thrombosis, and Vascular Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.