Abstract
Impaired insulin-mediated vasodilation in the skeletal muscle may be involved in the development of hypertension in patients with metabolic syndrome (MetS) and contribute to insulin resistance by diminishing the glucose uptake. Rho-kinase, an effector of the small G protein Rho A, plays an important role in hypertension and is reported to interfere with insulin signaling through serine phosphorylation of insulin receptor substrate-1 in blood vessels. We therefore examined the role of Rho-kinase in the pathophysiology of impaired vascular reactivity in patients with MetS by evaluating the effect of Rho-kinase inhibition on NO-dependent vasodilation during hyperinsulinemia. Forearm blood flow (FBF) responses to acetylcholine (ACh), a stimulus for endothelial release of NO, and sodium nitroprusside (SNP), an exogenous NO donor, were assessed during insulin administration (0.1 mU/Kg/min) using the forearm perfusion technique in patients with MetS (n=10) and matched controls (n=10). Patients with MetS were then randomized to intra-arterial infusion of either fasudil (inhibitor of Rho-kinase, 200 μg/min) or placebo and reactivity to ACh and SNP was reassessed. During hyperinsulinemia, vasodilator responses to both ACh and SNP were blunted in patients with MetS (both P>0.001 vs. controls). In patients who received fasudil, its administration did not change unstimulated FBF (P=0.75 vs. insulin alone); the vasodilator response to ACh, however, was significantly enhanced by fasudil (P=0.009 vs. insulin alone), while the response to SNP was not significantly changed (P=0.56). In patients with MetS who received placebo, vascular reactivity to both ACh and SNP was not different than before (both P>0.05). In conclusion, Rho-kinase inhibition during hyperinsulinemia improves endothelium-dependent vasodilator responsiveness in patients with MetS. This suggests that, under those conditions, intravascular activation of Rho-kinase is involved in the pathophysiology of endothelial dysfunction and may constitute a critical mediator linking metabolic and hemodynamic abnormalities in insulin resistance. As a consequence, targeting Rho-kinase might beneficially impact both vascular function and insulin sensitivity in patients with MetS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.