Abstract
Abstract In a murine melanoma model of malignant transformation promoted by sustained stress, increased levels of reactive oxygen species were found to result in DNA damage and were related to massive epigenetic alterations. Since the chromatin modifier Sirtuin-1 (SIRT1) is a protein attracted to double-stranded DNA break (DSB) sites and can recruit other components of the epigenetic machinery, we aimed to define the role of SIRT1 in melanomagenesis through our melanoma model. The DNA damage marker, γH2AX was found increased in melanocytes after 24 hours of deadhesion, accompanied by increased SIRT1 expression and decreased levels of its target, H4K16ac. Moreover, SIRT1 started to be associated to DNMT3B during the stress condition, and this complex was maintained along malignant progression. Mxd1 was identified by ChIP-seq among the DNA sequences differentially associated with SIRT1 during deadhesion and was shown to be a common target of both, SIRT1 and DNMT3B. In addition, Mxd1 was found down-regulated from pre-malignant melanocytes to metastatic melanoma cells. Treatment with DNMT inhibitor 5AzaCdR reversed the Mxd1 expression. Sirt1 stable silencing increased Mxd1 mRNA expression and led to up-regulation of MYC targets, such as Cdkn1a, Bcl2 and Psen2, the upregulation of which is associated with human melanoma aggressiveness and poor prognosis. We demonstrated a novel role of the stress responsive protein SIRT1 in malignant transformation of melanocytes associated with deadhesion. Mxd1 was identified as a new SIRT1 target gene. SIRT1 promoted Mxd1 silencing, which led to increased activity of MYC oncogene contributing to melanoma progression. Citation Format: Fabiana M. Meliso, Danilo Micali, Camila T. Silva, Thais S. Sabedot, Simon G. Coetzee, Adrian Koch, Fabian B. Fahlbusch, Houtan Noushmehr, Regine Schneider-Stock, Miriam G. Jasiulionis. SIRT1 regulates Mxd1 throughout melanoma progression [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 2413. doi:10.1158/1538-7445.AM2017-2413
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.