Abstract

Doxorubicin is known for its cardiotoxic effects and inducing cardiac failure, however, the underlying mechanisms remain cryptic. Earlier we established the inducible - death protein, Bcl-2-like Nineteen- Kilodalton- Interacting - Protein 3 (Bnip3) to be crucial for disrupting mitochondrial function and inducing cell death of cardiac myocytes. Whether Bnip3 underlies cardiotoxic effects of doxorubicin toxicity is unknown. Herein we demonstrate a novel signaling pathway that functionally links activation and preferential mitochondrial targeting of Bnip3 to the cardiotoxic properties of doxorubicin. Perturbations to mitochondria including increased calcium loading, ROS, loss of αΨm and mPTP opening were observed in cardiac myocytes treated with doxorubicin. In mitochondria, Bnip3 forms strong association with Cytochrome c oxidase subunit1 (COX1) of respiratory chain and displaces uncoupling protein 3 (UCP3) resulting in increased ROS production, decline in maximal and reserved respiration capacity and cell viability. Impaired mitochondrial function was accompanied by an accumulated increase in autophagosomes and necrosis demonstrated by increase release of LDH, cTnT and loss of nuclear High Mobility Group Protein 1 (HMGB-1) immunoreactivity. Interestingly, pharmacological or genetic inhibition of autophagy with 3-methyl adenine (3-MA), or Atg7 knock-down suppressed necrotic cell death induced by doxorubicin. Loss of function of Bnip3 restored UCP3-COX complexes, mitochondrial respiratory integrity and abrogated necrotic cell death induced by doxorubicin. Mice germ-line deficient for Bnip3 were resistant to doxorubicin cardiotoxicity displaying normal mitochondrial morphology, cardiac function and survival rates comparable to vehicle treated mice. The findings of the present study demonstrate that doxorubicin provokes maladaptive autophagy and necrotic cell death of ventricular myocytes that is mutually dependent and obligatorily linked to Bnip3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.