Abstract

Erythropoietin (Epo) was shown to improve cardiac function following ischemia reperfusion mainly via neo-angiogenesis and anti-apoptotic mechanisms. We found EpoR expression to be particularly high in adult cardiac progenitor cells (CPCs). Thus, we reasoned that Epo may play a role in the biology of these cells. We isolated CPCs from adult C57BL/6 hearts by enzymatic digestion and filtration (pore size: 30 µm). By means of immunofluorescence microscopy (IF) and flow cytometry (FC) we analyzed EpoR expression in the CPCs. 24±3% of the investigated cardiac cells were positive for EpoR with 3±2% of these being c-kit+ and 28%±2% Sca-1+. 52% of the EpoR+ cells expressed endothelial cell markers (40±2% CD34+, 9±2% FLK1+). 42±4% expressed myocyte markers (αMHC+, cTNT+). IF revealed a progenitor-like population with immature cell morphology and proliferation potential (ki67+). Cell cycle analysis showed an enrichment of αMHC+ EpoR+ cells in S and G2 phase (49±7%, n=3) as compared to the αMHC- EpoR- population (13±3%, n=3). Moreover, we tested the effect of Epo in the biology of these CPCs in vitro. At d14 we observed a two-fold increase of GATA4+ and cTnT+ cardiac cells in the co-cultures treated with Epo (n=3). CPC cycle arrest abrogated the aforementioned effects, suggesting that Epo influences mainly CPC proliferation. Finally, we tested the potential of Epo to protect against ischemia by inducing the proliferation of these αMHC+ CPCs in vivo in a myocardial infarction (MI) model. 4 weeks post MI, echocardiography did not reveal a significant functional improvement of the Epo receiving mice (2x, 2U/g Epo i.p). Nevertheless, FC analysis of the progenitor pool showed a significant augmentation of αMHC+ and cTnT+ cells (Sham: 19±3% vs Epo 35±3%, n=5; MI: 10.6±2.3%, n=6 vs Epo 20.3±1.9%, n=8). These data suggest an activation of myogenic progenitors by Epo, despite the lack of apparent regeneration under the investigated conditions. In conclusion, we found that EpoR is expressed in a putative cardiomyogenic progenitor cell pool in the adult heart. Epo drives their proliferation in vitro and in vivo even upon acute cardiac injury. We are currently investigating the long-term consequences of the observed progenitor cell activation in models of chronic ischemic injury.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call