Abstract

Viral myocarditis has been proposed to be initiated by viral replication in the heart (acute phase), followed by immune-mediated damage (subacute phase), where each phase requires anti-viral and immunomodulatory treatments, respectively. There are no specific biomarkers to distinguish acute from subacute phases of myocarditis while serum troponin, echocardiography, and myocardial biopsy data have been used for diagnosis clinically. To determine the phase-specific biomarkers, we used a mouse model for myocarditis induced by Theiler’s murine encephalomyelitis virus (TMEV), which belongs to the genus Cardiovirus, the family Picornaviridae. We conducted multivariate analyses of viral genome, serum cardiac troponin I, echocardiography, histology, and transcriptome using microarray data of the heart tissue harvested on 4 (acute) and 7 (subacute) days post infection (dpi). The level of viral RNA semi-quantified by RT-PCR was 10-fold higher on 4 dpi (ΔCt = 2.5×10-2 ± 4.9×10-3) than 7 dpi (ΔCt = 2.6×10-3 ± 3.0×10-4) (P < 0.05). Serum troponin was undetectable in 4 of 10 mice on 4 dpi and only in 1 of 10 mice on 7 dpi; the serum troponin levels (ng/ml) on 4 dpi (42.9 ± 15.6) were significantly lower than 7 dpi (249.9 ± 62.8) (P < 0.05). The levels of viral RNA and troponin were strongly correlated on 4 dpi (r = 0.79, P < 0.05), but not 7 dpi (P = 0.12), suggesting that viral replication could be a major cause of myocardial damage only on 4 dpi. We found multiple high intensity cardiac lesions using echocardiography with histological myocarditis on 7 dpi, but not 4 dpi. Transcriptome analyses of microarray data showed upregulation of genes associated with innate immune responses in samples from 4 and 7 dpi, compared with controls. Samples from 7 dpi showed upregulation of genes associated with T, B, and antigen presenting cells and downregulation of cardiac myosin-related genes (Myl4, Myl7, and Mybphl), compared with 4 dpi, suggesting that acquired immune responses contribute to cardiomyocyte damage on 7 dpi. In summary, the chronological order of emergence of biomarker candidates was 1) viral genome and innate immunity, 2) troponin, and 3) acquired immunity and echo and histological changes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call