Abstract

This study investigated MRI and semantic segmentation-based deep-learning (SSDL) automation for left-ventricular chamber quantifications (LVCQ) and low longitudinal strain (LLS) determination, thus eliminating user-bias by providing an automated tool to detect cardiotoxicity (CT) in breast cancer patients treated with antineoplastic agents. Displacement Encoding with Stimulated Echoes-based (DENSE) myocardial images from 26 patients were analyzed with the tool’s Convolution Neural Network with underlying Resnet-50 architecture. Quantifications based on the SSDL tool’s output were for LV end-diastolic diameter (LVEDD), ejection fraction (LVEF), and mass (LVM) (see figure for phase sequence). LLS was analyzed with Radial Point Interpolation Method (RPIM) with DENSE phase-based displacements. LVCQs were validated by comparison to measurements obtained with an existing semi-automated vendor tool (VT) and strains by 2 independent users employing Bland-Altman analysis (BAA) and interclass correlation coefficients estimated with Cronbach’s Alpha (C-Alpha) index. F1 score for classification accuracy was 0.92. LVCQs determined by SSDL and VT were 4.6 ± 0.5 vs 4.6 ± 0.7 cm (C-Alpha = 0.93 and BAA = 0.5 ± 0.5 cm) for LVEDD, 58 ± 5 vs 58 ± 6 % (0.90, 1 ± 5%) for LVEF, 119 ± 17 vs 121 ± 14 g (0.93, 5 ± 8 g) for LV mass, while LLS was 14 ± 4 vs 14 ± 3 % (0.86, 0.2 ± 6%). Hence, equivalent LV dimensions, mass and strains measured by VT and DENSE imaging validate our unique automated analytic tool. Longitudinal strains in patients can then be analyzed without user bias to detect abnormalities for the indication of cardiotoxicity and the need for therapeutic intervention even if LVEF is not affected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.