Abstract
Contractile dysfunction associated with ischemia is a significant cause of morbidity and mortality particularly in the elderly. Strategies designed to protect the aged heart from ischemia-mediated pump failure are needed. We have generated transgenic (Tg) mice expressing a modified form of adult cardiac troponin I, the Ca ++ -activated molecular switch of the myofilament. Consonant with the fetal isoform, this transgene encodes a histidine substitution (A164H) in the critical switch domain of TnI thus increasing myofilament calcium sensitivity in a pH-dependent manner. We hypothesized that aged mice (24 months), intrinsically susceptible to myocardial dysfunction, would retain improved cardiac contractility at baseline and during an acute hypoxic challenge by means of myofilament-mediated calcium sensitization. Methods/Results: At baseline, by echocardiography, Tg hearts had increased systolic function, with a 26% higher mean ejection fraction compared to nontransgenic (Ntg) mice: 75 ± 3% [Tg: n = 13] vs. 63 ± 4% [Ntg: n = 12], P < 0.05, with no differences in diastolic function between the groups. To study the effects of acute hypoxia on cardiac hemodynamics mice underwent microconductance Millar catheterization while ventilated with 12% oxygen. Aged Tg mice had improved survival compared to Ntg mice: time to pump failure (65% of baseline peak systolic pressure) 11.59 ± 1.25 min. [Tg: n = 3] vs. 4.11 ± 1.90 min. [Ntg: n = 3], P < 0.05. After four minutes of hypoxia, Tg mice had markedly improved cardiac contractility compared to Ntg mice with increased stroke volume (30.05 ± 4.49 uL [Tg] vs. 13.23 ± 3.21 uL [Ntg], P < 0.05), end systolic pressure (106.09 ± 11.81 mmHg [Tg] vs. 64.49 ± 4.05 mmHg [Ntg], P < 0.05) and rate of positive left ventricular pressure development (12958.66 ± 2544.68 mmHg/sec [Tg] vs. 5717.00 ± 745.67 mmHg/sec [Ntg], P = 0.05). Conclusion: An alteration in myofilament calcium sensitivity via a pH-responsive histidine button in cardiac troponin I augments baseline heart function in Tg mice over their lifetime. During acute hypoxia, cTnI A164H improves survival in aged mice by maintaining cardiac contractility, and thus holds promise for the design of gene therapeutics to treat pump failure associated with acute ischemic events in the elderly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.