Abstract

Background: Perivascular adipose tissue (PVAT) possibly plays a pivotal role in the development of atherosclerosis through its direct local action to the vessels. However, its physiological and molecular mechanisms are less understood. Visceral and subcutaneous white adipose tissues exert a brown adipose tissue-like phenotype under specific conditions such as cold exposure, i.e. browning. We here investigated the pathophysiological role of browning of PVAT against the development of atherosclerosis after endovascular injury. Methods and Results: Endovascular injury was generated by wire insertion into the femoral artery of C57BL/6 female mice. Transcriptome analysis revealed robust upregulation of brown adipose tissue markers such as Ucp1 , Elovl3 , Cox8b and Cidea in injured arteries. Notably, administration of an atheroprotective agent, 17-beta estradiol, significantly inhibited these changes; Ucp1 was the most down-regulated gene by 17-beta estradiol administration in the entire gene set (log2-fold change = -6.58, false discovery rate = 0.003). Consistently, the upregulation of browning markers after endovascular injury and these inhibitions by 17-beta estradiol were confirmed in PVAT by quantitative real-time PCR, western blot and immunohistochemical staining. The present study also demonstrated that vascular injury promotes macrophage infiltration in PVAT accompanied with upregulation of inflammatory cytokine production. Furthermore, we confirmed spatiotemporal synchronicity between browning and inflammation in PVAT by immunohistochemical staining. Conclusions: We observed that endovascular injury elicits browning in PVAT accompanied with exacerbated inflammation, and that atheroprotective 17-beta estradiol strongly inhibits this phenomenon. These findings may provide novel insights into pathogenesis of the atherosclerosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.