Abstract

Introduction: We have recently shown that pharmacologic inhibition of PTEN significantly increases cardiac arrest survival in a mouse model, however, this protection required pretreatment 30 min prior to the arrest. To improve the onset of PTEN inhibition during cardiac arrest treatment, we have designed a TAT fused cell-permeable peptide (TAT-PTEN9c) for rapid tissue delivery and protection. Hypothesis: We hypothesized that TAT-PTEN9c interferes with the endogenous PTEN binding to its regulatory proteins, resulting in reduced PTEN activity, improved mouse survival and cardiac functional recovery. The improved survival is in part due to enhanced glycolysis and reduced shunting to polyol pathway and osmotic injury in heart and brain. Methods: TAT-PTEN9c (7.5 mg/kg) was given intravenously after CA in mouse to determine protective effects of the treatment on survival and heart function. Western blot was used to determine the efficacy of TAT-PTEN9c for enhancing Akt and PDH E1α activity. The effect of TAT-PTEN9c on sorbitol accumulation in tissues was measured by spectrophotometer using NAD as substrate. Direct effect of TAT-PTEN9c treatment on cardiac function were also measured in Langendorff model of isolated rat heart. Results: In the mouse model of cardiac arrest, survival was significantly increased in the TAT-PTEN9c treated group compared to saline controls at 4 h after CPR. The treated mice had increased Akt phosphorylation and pyruvate dehydrogenase dephosphorylation at R30 min in heart tissues with significantly decreased sorbitol content and reduced release of taurine and glutamate into blood, suggesting improved metabolic recovery and glucose utilization. For the isolated heart model, RPP was reduced by 25% for non-treatment groups following arrest. With TAT-PTEN9c treatment, cardiac contractile function was completely recovered. TAT-PTEN9c significantly increased lactate production at 20 min of reperfusion, indicating increased glycolysis. Conclusion: TAT-PTEN9c enhances Akt and pyruvate dehydrogenase activity and decrease glucose shunting to the polyol pathway in critical organs, preventing osmotic injury and early cardiovascular collapse and death.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call