Abstract

Abstract Exosomes are natural and abundant nanoscale vesicles for intercellular communication, capable of transferring biological instructions between neighboring and distant cell types. Translational research efforts have focused on exploiting this communication mechanism to deliver exogenous pharmacologic payloads to treat a variety of diseases including cancer. Functionalization of the exosome surface with proteins and peptides is an important strategy to maximize the potential of exosomes as therapeutics. Comparative proteomic analysis (LC/MS) of stringently purified exosomes led to the identification of several highly enriched and unique proteins, including a transmembrane glycoprotein (Protein X, PrX), belonging to the immunoglobulin superfamily. Stable expression of PrX in a producer cell line resulted in a 200-fold increase of PrX on the secreted exosomes. Protein X was extensively characterized and the minimum structural requirements for exosome enrichment were determined. With our engExTM platform, we developed precision engineered exosome therapeutics using PrX as a scaffold to enable high-density exosome surface display of an array of structurally and biologically diverse proteins, including enzymes, antibodies, type I cytokines, and TNF superfamily members. These proteins were genetically fused to PrX and overexpressed in a producer cell. Significantly higher transgene expression on secreted exosomes was achieved compared to conventional scaffolds, including the tetraspanins CD9/CD63/CD81 and LAMP2B. Oligomerization of PrX coupled with avidity effects inherent in exosome surface display resulted in a clear activity advantage compared to free protein. Protein X-mediated display of CD40L on exosomes resulted in a 20-fold potency increase in B cell activation over recombinant CD40L. Furthermore, expression of CD40L redirected exosome uptake from phagocytic antigen presenting cells (APCs) to B cells, demonstrating exosome surface modifications can alter cellular tropism. We also evaluated the functionality of IL-12 tethered to the exosome surface and demonstrated superior tumor retention compared to free cytokine, resulting in robust anti-tumor activity in anti-PD-1 refractory B16F10 tumor models. These results demonstrate the potential of the engExTM platform to generate novel exosome therapeutics. Citation Format: Kevin Dooley, Ke Xu, Sonya Haupt, Nuruddeen Lewis, Rane Harrison, Shelly Martin, Christine McCoy, Chang Ling Sia, Su Chul Jang, Katherine Kirwin, Russell McConnell, Bryan Choi, Adam T. Boutin, Damian Houde, Jorge Sanchez-Salazar, Agata Villiger-Oberbek, Kyriakos D. Economides, John D. Kulman, Sriram Sathyanarayanan. engEx: A novel exosome engineering platform enabling targeted transfer of pharmacological molecules [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 2150.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.