Abstract

Rationale: In some type 2 diabetes mellitus (T2D) patients without hypertension, cardiac hypertrophy and attenuated cardiac function are observed, and this insult is termed “diabetic cardiomyopathy.” Tons of evidence suggests that microRNAs are involved in cardiac diseases. However, the functions of microRNAs in the diabetic cardiomyopathy induced by T2D and obesity are not fully understood. Methods and Results: C57BL/6 mice were fed a high-fat diet (HFD) for 20 weeks, which induced obesity and T2D. MicroRNA microarray and real-time PCR revealed that miR-451 levels were significantly increased in the T2D mouse hearts (n=4-5, p<0.05). Because excess supply of saturated fatty acids is a cause of diabetic cardiomyopathy, we stimulated neonatal rat cardiac myocytes (NRCMs) with palmitate in physiological albumin concentration and confirmed that miR-451 expression was increased in a dose-dependent manner (n=6-12, p<0.01). Loss of miR-451 function ameliorated palmitate-induced lipotoxicity in NRCMs (n=4, p<0.05). Calcium-binding protein 39 (Cab39) is a scaffold protein of liver kinase B1 (LKB1), an upstream kinase of AMP-activated protein kinase (AMPK). Cab39 was a direct target of miR-451 in NRCMs and Cab39 overexpression rescued the palmitate-induced lipotoxicity in NRCMs (n=4, p<0.01). To clarify miR-451 functions in vivo, we generated cardiomyocyte-specific miR-451 knockout (cKO) mice. HFD-induced cardiac hypertrophy and contractile reserves were ameliorated in cKO mice compared with HFD-fed control mice. Protein levels of Cab39 and phosphorylated AMPK were increased and phosphorylated mammalian target of rapamycin (mTOR) was reduced in HFD-fed cKO mouse hearts compared with HFD-fed control mouse hearts (n=10-12, p<0.05). We also measured the lipotoxic intermediates, triglyceride and ceramide, in these mouse hearts using HPLC-evaporative light scattering detector (ELSD). Although there was no difference in triglyceride levels (n=3-5), ceramide level was decreased in HFD-fed cKO mice compared with HFD-fed control mice (n=3-5, p<0.05). Conclusions: Our results indicate that miR-451 exacerbates diabetic cardiomyopathy. miR-451 is a potential therapeutic target for cardiac disease caused by T2D and obesity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call