Abstract

Abstract Background: Beyond phenotypic efficacy and safety categorization, high resolution profiling of drug-protein interactions and binding mechanisms remains a major hurdle during lead selection and optimization. A key milestone in structure-based drug design is compound binding site identification and characterization. Structure-activity relationship (SAR) studies utilize techniques such as nuclear magnetic resonance (NMR), x-ray crystallography (X-ray), cryo-electron microscopy (cryo-EM) and the mass spectrometry-based hydrogen-deuterium exchange (HDX) to address these hurdles but they are labor, time and cost intensive. Further, SAR studies are often complicated by protein size (i.e. large proteins) and location (i.e. membrane proteins), which can lead to protocol adaptations (e.g. recombinant protein usage and/or protein truncation) that can introduce artifacts. Using limited proteolysis (LiP) coupled to next-generation mass spectrometry we have developed a high-throughput, high-resolution approach (HR-LiP) that utilizes peptide-level resolution to characterize drug-protein interactions including for proteins that hindered by the previously mentioned limitations. Methods: To boost protein abundance in their native environment, proteins of interest were overexpressed in HEK293 cells using a simple plasmid construct. Cell lysates were incubated with the compounds of interest at increasing concentrations. Samples were then subjected to a limited digest using proteinase K and further processed for data independent acquisition (DIA)-MS analysis using trypsin. Data was analyzed using a directDIA workflow in Spectronaut. Results: Two well-characterized drug target proteins, bromodomain-containing protein 4 (BRD4) and epidermal growth factor receptor (EGFR), were selected for analysis. Using HR-LiP we identify the binding site of the BRD4 inhibitor JQ1 in the full-length protein, which is typically too large to be used directly in with conventional methods. Further, we map the intracellular binding location of both gefitinib and afatinib, two inhibitors of the membrane protein EGFR. Our data for both proteins are in good accordance with orthogonal data obtained by HDX-MS, NMR and X-ray studies. Conclusions: We demonstrate that HR-LiP can be used to dissect small molecule-protein binding events, including compound binding site prediction for protein targets classically considered to be difficult. Given its biological power, broad applicability and ease of implementation, we envision the use of HR-LiP as a routine approach for target validation and lead optimization in small molecule drug discovery pipelines. Citation Format: Nigel Beaton, Jagat Adhikari, Roland Bruderer, Ron Tomlinson, Yuehan Feng, Ivan Cornella-Taracido, Lukas Reiter. Prediction of small molecule-protein binding events for BRD4 and EGFR inhibitors using HR-LiP, a novel structural proteomics approach [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 2136.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call