Abstract

Introduction: Previous studies have demonstrated that ferroptosis, a newly defined iron-dependent cell death, mediates ischemia/reperfusion induced cardiomyopathy. However, it is unclear whether ferroptosis plays a role in post-resuscitation myocardial dysfunction (PRMD). This study investigated the effects of UAMC-3203, a novel analog of ferroptosis specific inhibitors, on myocardial function after cardiopulmonary resuscitation (CPR). Hypothesis: Administration of UAMC-3203 during CPR alleviates PRMD in a rat model of cardiac arrest (CA) and CPR. Methods: 18 male Sprague-Dawley rats weighing between 450-550g were randomized into 3 groups: 1) Sham, 2) Control, and 3) UAMC-3203 (5mg/kg, IP at start of precordial compression). Ventricular fibrillation (VF) was induced and continued for 6min. CPR was then initiated for 8min, after which defibrillation was attempted. Ejection fraction (EF), cardiac output (CO) and myocardial performance index (MPI) were measured by echocardiography at baseline, 15min, 1h, 3h and 6h respectively after return of spontaneous circulation (ROSC). Results: A significant reduction in cardiac function was observed after resuscitation. At 15 minutes after ROSC, ultrasound showed no difference in cardiac function between UAMC and control. However, at 1, 3, and 6 h after ROSC, UAMC significantly improved myocardial function (p<0.05) (Fig. 1). Conclusion: A ferroptosis-specific inhibitor, UAMC-3203, alleviated PRMD significantly in a rat of model of CA and CPR. Further study is needed to determine the benefit of this agent in larger animals and potential safety in humans before it can be tested in clinical resuscitation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call