Abstract
Clinical interest in endothelial cell-derived microparticles (EMPs) has increased due to their role in the pathogenesis of vascular disease. Although released by the endothelium, EMPs have autocrine properties that can significantly impact endovascular health. Hyperglycemic conditions, such as diabetes, are known to stimulate EMP release; however, the effects of these glucose-related microparticles on endothelial cell function are not well understood. High glucose concentrations induce endothelial cell apoptosis through a caspase-3-dependent mechanism. The aim of this study was to determine the effect of EMPs derived from a hyperglycemic condition on endothelial cell susceptibility to apoptosis. Human umbilical vein endothelial cells (HUVECs) were cultured (3 rd passage) and plated in 6-well plates at a density of 5.0 x 10 5 cell/condition. Cells were incubated with RPMI 1640 media containing 25mM D-glucose (concentration representing a diabetic glycemic state) or 5mM D-glucose (control, normoglycemic, condition) for 48 h to generate EMPs. EMPs derived from both conditions were pelleted by centrifugation and resuspended in culture media. EMP identification (CD144 + expression) and number was determined by flow cytometry. HUVECs (2 x10 6 cells/condition) were treated with EMPs (2:1 ratio) generated from either the hyperglycemic or normoglycemic conditions for 24 h. Thereafter, cells were treated with staurosporine (1μmol/L) for 3 h at 37°C and biotin-ZVKD-fmk inhibitor for 1 h at 37°C. Intracellular concentration of active caspase-3 was determined by enzyme immune assay. Cellular expression of miR-Let7a, an anti-apoptotic microRNA, was determined by RT-PCR using the ΔΔCT normalized to RNU6. Hyperglycemic EMPs resulted in significant increase in basal (1.5 + 0.1 vs 1.0 + 0.1 ng/mL) and staurosporine-stimulated (2.2 + 0.2 vs 1.4 + 0.1 ng/mL) caspase-3 activity compared with normoglycemic EMPs. Additional, the expression of miR-Let7a was markedly reduced (~140%) in response to hyperglycemic EMPs (0.43 + 0.17 fold vs control). These results demonstrate that hyperglycemic-induced EMPs increase endothelial cell apoptotic susceptibility. This apoptotic effect may be mediated, at least in part, by a reduction in miR-Let7a expression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.