Abstract

Endothelial progenitor cells (EPC) transplantation has been shown to enhance neovascularization and improve myocardial infarction (MI)-induced ventricular dysfunctions. However, persistent inflammation in the ischemic myocardium, adversely affect EPC survival and function, thereby compromising full benefits of EPC-mediated vascular repair. We hypothesized that modulation of IL-10 signaling in EPCs enhances their mobilization, survival and function in ischemic myocardium after MI. GFP-labeled EPC were transplanted intramyocardially after induction of MI, and the mice were treated with either saline or recombinant IL-10. EPC survival and EPC-mediated neovascularization and myocardial repair were evaluated. IL-10-treated mice showed increased number of GFP+EPCs retention that was associated with reduced EPC apoptosis in the myocardium (P<0.05). The engraftment of EPC into the vascular structures and the associated capillaries density was significantly higher in IL-10-treated mice (P<0.05). The above findings were corroborated with reduced infarct size, fibrosis and enhanced LV function (echocardiography) in IL-10+EPC group as compared to EPC+saline group. Invitro, IL-10-deficient EPCs showed higher LPS-induced apoptosis compared to WT-EPCs (P<0.05). IL-10 treatment induced VEGF expression in WT-EPCs which was abrogated by STAT3 inhibition (using curcurbitacin I). Furthermore, microRNA (miR) profile experiments identified significant increases in a number of pro-apoptotic and anti-angiogenic-related miRs in EPCs from IL-10 deficient mice. Interestingly, IL-10-deficient mice showed impaired MI-induced mobilization of bone marrow EPCs (Sca1+Flk1+ cells) into the circulation and the associated SDF-1 mRNA expression in the myocardium. Bone marrow transplantation studies involving replacement of IL-10-deficient marrow with WT marrow attenuated these effects. Invitro, LPS-induced CXCR4 expression was lower in IL-10-deficient EPCs as compared to WT-EPC. Taken together, our studies suggest that IL-10 enhances EPC mobilization, possibly in an SDF1-CXCR4 dependent manner and increased their survival and neovascularization and the associated myocardial repair, in part via activation of STAT3 signaling cascades.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call