Abstract

Abstract A major hindrance to advances in the care of patients with malignant gliomas is the presence of the blood brain barrier (BBB) and blood-brain tumor barrier (BBTB) that greatly restricts drug access from the plasma to the tumor cells. Bubble-assisted Focused Ultrasound (BAFUS) has proven effective in opening the BBB for treatment of glial tumors in adults and pediatric cases. BAFUS has been previously shown to disrupt noninvasively, selectively, and transiently the BBB in small animals in vivo. However, there is a lack of an in vitro preclinical model suitable for testing the genetic determinants of endothelial cell tight junction integrity and vulnerability to the physical disruption. Our BBB organ-on-chip platform will enable precision medicine of brain cancers through identifying patient-specific parameters by which to open the BBB allowing use of drugs and drug combinations otherwise unsuitable. We intend to sequence these in vitro models to verify that the genotype (alleles/SNPs) of tight junction proteins contribute to BBB structure and integrity. To initiate this effort, we report the development of an ultrasound transparent organ-on-chip model populated by iPSC-derived endothelial cells (iPSC-EC) co-cultured with astrocytes. Western blot, immunocytochemistry, permeability, and transelectrical endothelial resistance (TEER) studies all convey expression of key EC proteins and marked barrier integrity. Further benchmarking of device-ultrasound interactions, successful iPSC differentiation, tight junction formation, and fabrication of nanobubbles and their assistance in ultrasound BBB disruption will be presented. Efforts are underway to analyze nine characteristic BBB tight junction genes from WGS data to determine associations between iPSC-EC genotype and phenotype. Citation Format: Jayashree Iyer, Adam Akkad, Nanyun Tang, Sen Peng, Michael Berens, Frederic Zenhausern, Jian Gu. A focused ultrasound blood brain barrier disruption model to test the influence of tight junction genes to treat brain tumors [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 195.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.