Abstract

Several studies have reported reprogramming of fibroblasts (Fibs) to induced cardiomyocytes, and we have recently reprogrammed mouse Fibs to induced cardiac progenitor cells (iCPCs), which may be more favorable for cardiac repair because of their expandability and multipotency. Adult cardiac (AC), lung and tail-tip Fibs from an Nkx2.5-EYFP reporter mouse were reprogrammed using a combination of five defined factors into iCPCs. Transcriptome and immunocytochemistry analysis revealed that iCPCs were cardiac mesoderm-restricted progenitors that expressed CPC markers including Nkx2.5, Gata4, Irx4, Tbx5, Cxcr4, Flk1 etc. iCPCs could be extensively expanded (over 30 passages) while maintaining multipotency to differentiate in vitro into cardiac lineage cells including cardiomyocytes (CMs), smooth muscle cells and endothelial cells. iCPC derived CMs upon co-culture with mESC-derived CMs formed intercellular gap junctions, exhibited calcium transients, and contractions. The purpose of this study was to determine the in vivo potency of iCPCs. Given that the Nkx2.5-EYFP reporter identifies embryonic CPCs, we first tested the embryonic potency of iCPCs using an ex vivo whole embryo culture model injecting cells into the cardiac crescent (CC) of E8.5 mouse embryos and culturing for 24 to 48 hours. GFP labeled AC Fibs were first tested and live imaging revealed that after 24 hours these cells were rejected from the embryo proper and localized to the ecto-placental cone. In contrast, iCPCs reprogrammed from AC Fibs when injected into the CC localized to the developing heart tube and differentiated into MLC2v, αMHC and cardiac actin expressing CMs. Further we injected iCPCs into infarcted adult mouse hearts and determined their regenerative potential after 1-4 wks. The iCPCs significantly improved survival (p<0.01 Mantel-Cox test) in treated animals (75%) as compared to control (11%). Immunohistochemistry revealed that injected iCPCs localized to the scar area and differentiated into cardiac lineage cells including CMs (cardiac actin). These results indicate that lineage reprogramming of adult somatic cells into iCPCs provides a scalable cell source for cardiac regenerative therapy as well as drug discovery and disease modeling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call