Abstract

Elevated levels of norepinephrine (NE) occur in pulmonary arterial hypertension (PAH) and are determined, in part, by the activity of catechol- O -methyltransferase (COMT). COMT degrades catecholamines, is negatively regulated by calcium, and is expressed by pulmonary artery endothelial cells (PAEC). As hyperaldosteronism occurs in PAH and aldosterone (ALDO) influences calcium levels, we hypothesized that ALDO decreases COMT activity to increase NE levels in PAH. Accordingly, human PAEC were treated with ALDO (10 -7 mol/L), a level that is achieved clinically in PAH, for up to 72 h. Compared to vehicle-treated PAEC, ALDO decreased COMT activity by 59.2 ± 6.2% (p<0.01) to increase NE levels in the medium (122.4 ± 11.8 vs. 210.7 ± 15.5 pg/mL/mg protein, p<0.01). This occurred as a result of an ALDO-mediated decrease in COMT protein expression by 52.6 ± 9.3% (p<0.01) as well as an increase in intracellular calcium levels (102.9 ± 21.0 vs. 167.7 ± 17.8 nmol/L, p<0.05) to inhibit activity. These effects were abrogated by coincubation with spironolactone. To determine the in vivo relevance of these findings, COMT was examined in the rat monocrotaline model of PAH with confirmed hyperALDO. COMT was decreased (47.6 ± 10.2 %control, p<0.05) in remodeled pulmonary arterioles with a concomitant increase in lung NE levels (432.8 ± 44.5 vs. 899.7 ± 34.2 pg/mL, p<0.01) compared to control rats. In the porcine pulmonary vein banding model of pulmonary hypertension (PH-pigs) with elevated mean pulmonary artery pressure (15[13-15] vs. 35[27-43], p<0.01) and pulmonary vascular resistance (PVR) index (1.97[1.74-2.28] vs. 5.78[2.61-8.75], p <0.05), ALDO levels were also increased (27.1 ± 5.1 vs. 60.8 ± 10.6 pg/mL, p<0.03) in advance of right heart failure as compared to sham controls. PH-pigs demonstrated a 48.3 ± 9.9% (p<0.02) decrease in pulmonary vascular COMT expression and an increase in NE levels (114.6 ± 20.2 vs. 1,622.6 ± 489.2 pg/mL, p<0.02) that correlated positively with ALDO levels (R 2 =0.58, p<0.02). These findings were confirmed in patients with PAH. Together, these data indicate that there is crosstalk in the pulmonary vasculature between ALDO and the sympathetic nervous system to regulate NE levels in PAH, and thus, have implications for therapeutic interventions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.