Abstract

Bnip3 is a member of the BH3-only subfamily of pro-apoptotic Bcl-2 proteins and is associated with mitochondrial dysfunction and cell death in the myocardium. The pro-apoptotic Bcl-2 proteins mediate mitochondrial dysfunction independent of the mitochondrial permeability transition pore (mPTP). However, Bnip3 has been reported to mediate cell death via the mPTP. In this study, we investigated the mechanism(s) by which Bnip3 causes mitochondrial dysfunction. Using a mitochondrial swelling assay to assess pore opening, we found that addition of 200 microM Ca2+ to mitochondria isolated from rat hearts induced rapid swelling of mitochondria and release of cytochrome c (cyto c). Bnip3 also induced mitochondrial swelling and cyto c release, but always at a slower rate and to a greater degree, suggesting that Bnip3 mediates swelling via a different mechanism. Cyclosporin A (CsA), an inhibitor of mPTP opening, prevented Ca2+-induced swelling and cyto c release, but had no effect on Bnip3. Another BH3-only protein, tBid, caused release of cyto c but failed to induce swelling of mitochondria. Interestingly, Bnip3, but not Ca2+ and tBid, induced release of the matrix protein MnSOD. Cyclophilin D (cycD) is an essential component of the mPTP and heart mitochondria isolated from cycD−/− mice were resistant to Ca2+-, but not to Bnip3-induced swelling and cyto c release. Also, tBid caused cyto c release without mitochondrial swelling in the absence of cycD. To further explore the mPTP as a downstream effector of Bnip3-mediated cell death, we assessed cell death in mouse embryonic fibroblasts (MEFs) isolated from wild type (wt) and cycD−/− mice. Infection with an adenovirus expressing Bnip3 caused significant cell death in wt (52.8±1.8%) and cycD−/− (61.8±6.1%) MEFs as measured by LDH release. In addition, both Bnip3 and opening of the mPTP have been reported to initiate upregulation of autophagy. Monitoring of GFP-LC3 incorporation into autophagosomes by fluorescence microscopy revealed that Bnip3 infection induced autophagy in wt (86.5±6.6%) and cycD−/− (96.4±1.4%) MEFs (n=3, p<0.05). Thus, these studies suggest that Bnip3 mediates permeabilization of the inner and outer mitochondrial membranes via a novel mechanism that is different from other BH3-only proteins. This research has received full or partial funding support from the American Heart Association, AHA National Center.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.