Abstract

Introduction: During heart failure, levels and activity of G protein-coupled receptor kinase 2 (GRK2) increase. GRK2 is canonically studied in the phosphorylation of GPCRs and β-adrenergic desensitization. Noncanonical activities of GRK2 are being uncovered, however. Our lab has recently discovered that in cardiac myocytes, GRK2 translocates to the mitochondria ( mtGRK2 ) following injury and is associated with negative effects on metabolism and cell survival. Hypothesis: GRK2 plays a role in regulating mitochondrial function following cardiac stress and contributes to HF pathogenesis in a novel manner, by interacting with a novel group of mitochondrial proteins involved in pro-death signaling, bioenergetics and substrate utilization. Methods: Mitochondrial translocation of GRK2 was validated with either protein kinase C inhibitor (chelerythine) administration or hypoxia/reoxygenation stress in primary neonatal rat ventricular myocytes or a cardiac-like cell line. Immunoprecipitation of the GRK2 interactome basally and under stress conditions was conducted endogenously in vitro, in vivo , and with purified recombinant GRK2 peptides. Proteins were separated via SDS-PAGE and potential binding partners were identified by mass spectroscopy (LCMS) and proteomics analysis conducted with Ingenuity Pathway (IPA; Qiagen) software to determine which partners in the GRK2 interactome were potentially involved in mitochondrial dysfunction. Results: Subunits of Complexes I, II, IV and V of the electron transport chain were identified as potential mtGRK2 interacting partners. Several mtGRK2-ETC interactions were increased following oxidative stress-induced translocation of GRK2. Finally, mtGRK2 appears to phosphorylate some of the interactome partners identified in mitochondrial dysfunction. Conclusions: The phosphorylation of subunits of the ATP synthesis machinery by mtGRK2, or other mechanisms of interaction between these proteins, may be regulating some of the phenotypic effects of HF previously observed by our lab, such as increased ROS production and reduced fatty acid metabolism. Further research is essential to elucidate the novel role of GRK2 in regulating mitochondrial bioenergetics and cell death in failing hearts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call