Abstract

Objective. PAI-1 mRNA and protein have been detected in human platelets. Recently some miRNAs have been found in human platelets, which are involved in the regulation of genes and the protein synthesis. However, little is known about the physiological roles of individual miRNAs in platelets. In this study, we investigated whether miR30c can regulate platelet-derived plasminogen activator inhibitor-1(PAI-1). Methods and Results. Expression of miR-30c, PAI-1, miR-21 and its targeted gene TIMP1 were found in healthy human leukocyte-depleted platelets (LDPs) by real time PCR. In luciferase reporter gene assay, miR-30c targets the 3’ untranslated region (3’ UTR) of PAI-1 mRNA through a miR-30c binding site. Transfection of miR-30c mimic into MEG-01, a megakaryoblastic cell line, significantly reduced PAI-1 protein level compared with negative control. Inhibition of miR-30c by transfecting miR-30c inhibitor significantly increased PAI-1 protein level. Furthermore, miR-21 expression was significantly down-regulated after transfecting with miR-30c mimic in PAI-1-/- mice LDPs, conversely, the expression of its target gene TIMP1 was significantly up-regulated after transfecting with miR-30c mimic in PAI-1-/- mice LDPs. Conclusion. These results provide a novel regulatory mechanism of miR30c- regulated PAI-1 protein through its influence on the downstream miR21 and its target gene TIMP1 expression in platelet, suggesting that miR-30c might be a potential new strategy for anti-thrombosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.