Abstract

Introduction: Cerebral ischemia-reperfusion injury produces inflammation and cerebral microcirculatory dysfunction after cardiopulmonary resuscitation (CPR). Melatonin (N-acetyl-5-methoxytryptamine) has both anti-inflammatory and anti-oxidative properties. In this study, we investigated the effects of melatonin on inflammation and cerebral microcirculation after cardiopulmonary resuscitation in a rat model of cardiac arrest. Hypothesis: Melatonin decreases the systemic inflammatory response after cardiopulmonary resuscitation and will preserve cerebral microcirculation in a rat model of cardiac arrest. Method: Eighteen male Sprague Dawley rats weighing between 450-550 g were randomized into three groups: 1) sham: no ventricular fibrillation (VF) and CPR; 2) CPR control: untreated VF for 6 min followed by 8 min CPR; 3) CPR+melatonin: untreated VF for 6 min followed by 8 min CPR. Melatonin (10 mg/kg) was administered intraperitoneal (IP) in line with hypoxia-ischemia animal studies after return of spontaneous circulation (ROSC). Serum TNF- α, IL-1 β and cerebral microcirculation were measured at baseline and 6 h following ROSC. Result: Serum TNF-α and IL-1β were significantly lower in the CPR+melatonin group at 6h after ROSC compared to CPR controls ( p <0.01, Fig. 1). Animals treated with melatonin had improved cerebral microcirculation including perfused vessel density (PVD), proportion of perfused vessels (PPV) and microvascular flow index (MFI) compared to control animals ( p <0.05, Fig. 2). Conclusion: In a rat model of cardiac arrest, melatonin reduced systemic inflammation and preserved cerebral microcirculation following resuscitation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call