Abstract
ATP binding cassette transporter G1 (ABCG1), which is expressed in macrophages, has been implicated in the efflux of cholesterol to high density lipoprotein. Peroxisome proliferator-activated receptor γ (PPARγ) has been reported to be involved in cholesterol efflux from macrophages, and increased expression of ABCG1 via liver receptor X (LXR)-dependent and independent pathways. However, the mechanisms by which ABCG1 expression is increased by PPARγ have not been fully characterized. We observed that pioglitazone, a PPARγ ligand, increases cholesterol efflux from THP-1 macrophages, as well as ABCG1 mRNA and protein levels. Treatment with actinomycin D abolished the inducible effect of pioglitazone on ABCG1, indicating that pioglitazone transcriptionally activated ABCG1 expression. To clarify how pioglitazone regulates ABCG1 expression, we investigated promoter activity using reporter constructs containing human ABCG1 promoter A and B (located upstream of exon 1 and 5, respectively), with or without mutated LXR-binding sites. The results indicated that pioglitazone activated both promoters in an LXR-dependent manner. We also observed that pioglitazone increased two major transcripts driven by promoter A and B using specific primers for each transcript. To determine whether PPARγ and LXRα were involved in these effects of pioglitazone, we performed siRNA-knockdown of PPARγ and LXRα in macrophages, which resulted in 75% and 91% decreases in PPARγ and LXRα mRNA levels, respectively. PPARγ and LXRα-knockdown, respectively, completely or partially abolished pioglitazone-induced ABCG1 expression. In conclusion, these results suggest that pioglitazone transcriptionally increased ABCG1 expression in macrophages by activating dual promoters in an LXR-dependent manner. Further studies are needed to assess LXR-independent mechanisms for the stimulatory effect of pioglitazone on ABCG1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.