Abstract

Abstract Tumor hypoxia is prevalent in head and neck squamous cell carcinoma (HNSCC), where it limits radiotherapy outcomes. Hypoxia-activated prodrugs (HAPs) have been developed to target hypoxic regions of tumors. These agents undergo oxygen-sensitive reductive activation, thereby delivering cytotoxic species within hypoxic cells. This study investigated the efficacy and sensitivity determinants of the clinical-stage HAP evofosfamide (TH-302) using molecularly-characterized models of HNSCC. We deployed a collection of 27 HPV-negative HNSCC cell lines derived from lesions of varying TNM stages and primary, nodal or recurrent sites. The collection was characterized for gene expression by RNA-seq, from which somatic variants were also called. Their transcriptomic features were investigated in the context of pan-cancer TCGA data by hierarchical clustering. The potency and hypoxic selectivity of 3 HAPs - evofosfamide, PR-104A and SN30000 - were assessed by antiproliferative assay in 22 lines and compared to bromo-isophosphoramide mustard (Br-IPM), cisplatin and 5-FU. The antitumor activity of evofosfamide (50 mg/kg qdx5 for 2-3 cycles with or without a single 10 Gy dose of radiation on day 5 of cycle 1) was evaluated in HNSCC xenografts in addition to a PDX isolated from an SCC of the glottic larynx. The hypoxic fraction at baseline and after 5 days of treatment was quantified by pimonidazole staining. Genetic modifiers of sensitivity to evofosfamide and its cytotoxic metabolite Br-IPM were explored through whole-genome CRISPR-Cas9 screens using the GeCKO v2 library. High-throughput screens with a custom shRNA pool were performed in one HNSCC and two pancreatic ductal adenocarcinoma cell lines to identify reductases responsible for the activation of evofosfamide in hypoxic cells. Evofosfamide was more potent and more selective for hypoxic HNSCC cells in vitro than PR-104A or SN30000. Cell line sensitivity to evofosfamide was correlated with Br-IPM and cisplatin but not with PR-104A, SN30000 or 5-FU, indicating distinct sensitivity determinants. Evidence of antitumor activity with evofosfamide was observed in vivo. CRISPR screens identified potential evofosfamide sensitivity genes that were reproducibly enriched following drug exposure. Reductase-focused RNA interference screens defined a cluster of sensitivity genes that mapped to mitochondrial electron transport, whereas shRNA’s targeted against presumed activating enzymes such as POR were not enriched. Concentration-dependent oxidation of cytochrome a and decreased respiration was observed in cells exposed to evofosfamide, suggesting reduction by mitochondrial complexes. This study provides a rationale for the clinical evaluation of evofosfamide with radiotherapy in genetically defined subsets of HNSCC patients. Citation Format: Francis W. Hunter, Avik Shome, Dan Li, Way W. Wong, Peter Tsai, Nooriyah Poonawala, Purvi M. Kakadiya, Troy M. Ketelä, Maria K. Kondratyev, Courtney R. Lynch, Tet-Woo Lee, Khanh B. Tran, Jules B. Devaux, Rachel Zussman, Cho R. Hong, Dennis Kee, Andrew M. Macann, Anthony J. Hickey, Stefan K. Bohlander, Cristin G. Print, William R. Wilson, Bradly G. Wouters, Stephen M. Jamieson. Preclinical efficacy and sensitivity determinants of evofosfamide in molecularly defined models of head and neck squamous cell carcinoma [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 169. doi:10.1158/1538-7445.AM2017-169

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call