Abstract

Abstract Most adult gastrointestinal stromal tumors (GIST) are driven by activating KIT or PDGFRA mutations. The remaining 10-15% of cases, often referred to as wildtype (WT) GIST, display either alterations of the succinate dehydrogenase complex (SDH) or RAS pathway mutations. To gain additional insight into the biology of GIST, we performed whole-exome or genome and RNA sequencing in 38 GIST patients (WT, n=15; KIT-mutant, n=21; PDGFRA-mutant, n=2) enrolled in a prospective molecular stratification trial of NCT Heidelberg/Dresden and the German Cancer Consortium (DKTK) designed for younger adults with advanced-stage cancer across histologies and patients with rare tumors (NCT/DKTK MASTER). Of the 15 patients with WT GIST, 3 had pathogenic germline mutations in NF1 and 9 harbored SDH alterations (germline, n=5; somatic, n=4). In the 3 patients with quadruple-negative GIST - defined by the absence of KIT, PDGFRA, SDH, or RAS pathway alterations - we detected novel gene fusions affecting RET, FGFR2, and FGF4, respectively. To delineate biologically relevant subgroups of GIST based on RNA sequencing data from the entire cohort (n=34), we used 3 different clustering methods and 4 different measures of stability and consistency. Despite the underlying clinical and molecular heterogeneity, we identified 3 distinct transcriptional subgroups that were characterized by (i) SDH deficiency, (ii) recurrent somatic RB1 alterations and mutational signatures associated with defective homologous recombination DNA repair, and (iii) elevated PDGFRA expression, respectively. Furthermore, we used random forest analysis to identifiy genes that are significantly (p<0.005) differentially expressed between the 3 subgroups. Interestingly, quadruple-negative cases did not form a separate cluster or clustered within a specific subgroup. Collectively, our data illustrate the molecular heterogeneity of advanced-stage GIST and support comprehensive molecular profiling approaches to capture the entire spectrum of clinically actionable genetic alterations, such as diverse fusion genes affecting kinase signaling pathways in quadruple-negative cases or pathogenic germline mutations in patients with inconspicuous family histories. The finding of two separate transcriptional clusters among patients with SDH-proficient GIST may be reflective of distinct regulatory pathways whose molecular underpinnings and clinical actionability warrant further study. Citation Format: Peter Horak, Matea Hajnic, Laura Gieldon, Mario Hlevnjak, Susan Richter, Barbara Hutter, Johanna Falkenhorst, Sebastian Uhrig, Gregor Warsow, Nagarajan Paramasivam, Stefan Gröschel, Barbara Klink, Simon Kreutzfeldt, Christoph Heining, Christoph E. Heilig, Martina Fröhlich, Stephan Richter, Christian Brandts, Wilko Weichert, Philipp Jost, Olaf Neumann, Marc Zapatka, Albrecht Stenzinger, Alexander Marx, Benedikt Brors, Evelin Schröck, Sebastian Bauer, Peter Hohenberger, Hanno Glimm, Claudia Scholl, Stefan Fröhling. Comprehensive genomic and transcriptomic profiling of gastrointestinal stromal tumors [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 1686.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call