Abstract

Tetrahydrobiopterin (BH4) is an essential cofactor for endothelial nitric oxide synthase (eNOS) function and nitric oxide (NO) generation. Augmentation of BH4 levels can prevent eNOS uncoupling and improve endothelial dysfunction in vascular disease states. However, the physiological requirement for de-novo endothelial cell BH4 biosynthesis in eNOS function remains unclear. We generated a novel mouse model with endothelial cell-specific deletion of GCH1, encoding GTP cyclohydrolase 1, an essential enzyme for BH4 biosynthesis, to test the cell-autonomous requirement for endothelial BH4 biosynthesis in vivo. Mice with a floxed GCH1 allele ( GCH1 fl/fl ) were crossed with Tie2cre mice to delete GCH1 in endothelial cells. GCH1 fl/fl Tie2cre mice demonstrated virtually absent NO bioactivity and significantly greater O 2 • - production. GCH1 fl/fl Tie2cre aortas and mesenteric arteries had enhanced vasoconstriction to phenylephrine and impaired endothelium-dependent vasodilatations to acetylcholine and SLIGRL. Endothelium-dependent vasodilatations in GCH1 fl/fl Tie2cre aortas were in part mediated by NOS-derived hydrogen peroxide (H 2 O 2 ), which mediated vasodilatation through soluble guanylate cyclase. Ex vivo supplementation of aortic rings with the BH4 analogue sepiapterin restored normal endothelial function and abolished eNOS-derived H 2 O 2 production in GCH1 fl/fl Tie2cre aortas. GCH1 fl/fl Tie2cre mice had higher systemic blood pressure than wild-type littermates, which was normalised by NOS inhibitor, L-NAME. Taken together, these studies reveal an endothelial cell-autonomous requirement for GCH1 and BH4 in regulation of vascular tone and blood pressure, and identify endothelial cell BH4 as a pivotal regulator of NO vs. H 2 O 2 as alternative eNOS-derived endothelial derived relaxing factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.