Abstract

Introduction: Mitochondrial function is impaired in aged hearts. Increased endoplasm reticulum (ER) stress contributes to the mitochondrial dysfunction observed during aging. Ceramides (CRMD) are sphingolipid metabolites that contribute key roles in cell signaling. Increased CRMD can lead to ER stress. Ceramide synthase enzymes (CerS) generate chain length specific CRMD with the CerS isoform 2 (Cers2) forming very long chain CRMD of ≥ 20 carbon acyl chain lengths. Hypothesis: An increase in CRMD content during aging contributes to age-related ER stress. Methods: Male mice (3, 18, 24 mo.) from the NIA colony were studied. Cardiac mitochondria (MITO), mitochondrial associated membranes (MAM), and ER were isolated from mouse hearts. CRMD content was measured using LC-MS. The contents of CerS enzymes were measured by immunoblotting in myocardial homogenates. Results: ER stress increased progressively during aging with increased contents of cleaved ATF6 and CHOP, indicators of increased ER stress, evident at 18 and 24 mo. (Panel A) (all data mean±SEM; *p<0.05 vs. 3 mo., † p<0.05 vs. 18 mo.). Aging increased very long-chain CRMD (≥C20) in ER (Panel B) at 18 and 24 mo. Similar CRMD trends were observed MAM (Panel C), shared membrane domains where ER and MITO interact. The content of CerS2 was increased at 24 mo. compared to 3 mo. (Panel D, n=4 each age). In contrast, the contents of CerS isoforms 4 and 5, that generate shorter chain CRMD (<C20) were unchanged (not shown). CRMD contents in MITO were unaltered with age (not shown). Thus, increased generation of very long chain CRMD in the ER is the likely mechanism of increased ER stress in the aged heart. Conclusion: Aging increased ER CRMD content by enhancing the formation of very long chain CRMD in ER by an increase in CerS2 content, concomitant with the onset of ER stress. The increase in age-induced ER stress, in turn, leads to mitochondrial dysfunction in the aged heart.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.