Abstract

Recent studies report that postnatal mammalian hearts undergo cardiomyocyte refreshment. While the exact origin of the cells involved in postnatal cardiomyogenesis remains unclear. Here, we identified a pool of Nkx2.5 enhancer expressing cells in the postnatal mouse heart with cardiomyogenic differentiation potential in vitro. We tracked the expression of a cardiac-specific enhancer of Nkx2.5 using inducible Nkx2.5 enhancer-Cre mice from embryonic development to adulthood and post-myocardial infarction (MI) and documented the Nkx2.5 enhancer expressing cells directly contribute to postnatal cardiomyogenesis in vivo. Upon genetic ablation of these activated progenitors after myocardial injury, the cardiac function deteriorated. Transcriptomic analysis of Nkx2.5 enhancer expressing cells showed high expression of heart development genes. To trace the developmental origin of the activated Nkx2.5 cardiomyogenic progenitor cells, we created different lineage-Cre/Nkx2.5 enh-eGFP/ROSA26 reporter triple transgenic mice. Post-MI Nkx2.5 cardiomyogenic progenitor cells originated from the embryonic epicardial cells, not from the pre-existing cardiomyocytes, endothelial cells, cardiac neural crest cells, or perinatal/postnatal epicardial cells. Together, this study confirmed that cardiac lineage-specific progenitor cells, which originate from embryonic epicardium-derived cells, contribute to postnatal mammalian cardiomyogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call