Abstract

Abstract Purpose Cancer is one of the leading causes of death worldwide. Patient-derived tumor cells can serve as a powerful resource for studying pathophysiologic mechanisms and developing robust strategies for precision medicine. To address this problem, we launched the patient-derived organoids (PDOs) Hub to establish a comprehensive model of various tumor organoids from pancreatic, biliary tract, liver, colorectal, breast, gastric, ovarian, and oral cancers, with matching clinical data and molecular characteristics. Methods All specimens were collected from histologically confirmed cancer patients at the National Cancer Center. Samples obtained from surgery, biopsy, or body fluid (malignant ascites or pleural effusion) were collected for ex vivo culture of tumor cells. PDOs were managed according to our standard operating procedure (SOP), which included specimen delivery process, separation of cells from tissues, criteria for subculture, quality control (QC), production of genomic and histologic data, and the 384-well-based drug response evaluation system. Organoids were considered to be successfully cultured when they were maintained for five or more passages. Results A total of 263 PDOs were established from various cancer types, including oral cancer (N = 89), pancreatic cancer (N = 48), ovarian cancer (N = 32), breast cancer (N = 30), biliary tract cancer (N = 29), hepatocellular carcinoma (N = 17), gallbladder cancer (N = 8), gastric cancer (N = 7) and colorectal cancer (N = 3). PDOs broadly recapitulated the histologic and genetic characteristics of the patient’s tumor. These organoids available for long-term culture were cryopreserved, and a total of 2986 stocks have been accumulated. Drug screening tests were performed with 60 PDOs (pancreatic cancer, N = 36; breast cancer, N = 15; ovarian cancer, N = 6; gastric cancer, N = 3) using selected agents among the 47 drugs for each type of cancer. Profiles of cytotoxic agents were well correlated with the patient’s clinical responses to the matched drugs and tested investigational agents also showed promising antitumor activity. Conclusions We have established a model of several human cancer organoids. This will serve as the platform that can recapitulate the physiology and drug response profiles of human cancer and pave the way for screening innovative drugs, identifying novel targets, and stratifying patients for pertinent therapeutic options. (This work was supported by National Research Foundation of Korea grant, funded by the Korean government (MSIT) (No. 2020M3A9A5036362)) Citation Format: Yebeen Yu, Mi Rim Lee, Wonyoung Choi, Sumin Kang, Jeong Eun Gong, Soobeen Heo, Hye Ju Park, Sang Myung Woo, So-Youn Jung, Sung Weon Choi, Jong-Ho Lee, Myong Cheol Lim, Ji Yeon Baek, Bo Hyun Kim, Ji Hoon Kim, Yuri Cho, Sang-Jae Park, Yun-Hee Kim, Sun-Young Kong. Patient-derived organoids (PDOs) hub of National Cancer Center, Korea: pre-clinical model for drug screening [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 161.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call