Abstract

Background: Oxygen availability at the cellular level in vivo is significantly lower (~1-7%) than that used for typical ambient cell culture conditions (21%). Here we investigated whether prolonged culture at reduced O2 concentrations affected proliferation, senescence and oxidative stress of human cardiac progenitor cells (hCPCs). Methods: hCPCs positive for c-kit and negative for lineage markers (ckit+/Lin-) were isolated from right atrial tissues obtained from five infants during repair of congenital heart defects and expanded for a maximum of 10 passages in varying O2 concentrations (1, 5, and 21%); all manipulations were performed at the target O2 in a hypoxic chamber. Cellular phenotype was confirmed by ICC staining and flow cytometry. Doubling time, oxidative stress (8-OH-deoxyguanosine [8OHdG], protein carbonyl formation) and senescence markers (telomere length, telomerase activity, P16ink4a staining) were measured. Results: Reducing ambient O2 from 21% to 1% did not alter cell surface marker expression. Culture and expansion at 21% O2 markedly accelerated hCPC senescence compared to 1% or 5% O2, as indicated by increased P16ink4a positive hCPCs and greater loss of telomere length and telomerase activity; much of this damage appeared to occur during early passage and expansion. Both protein carbonyl and 8OHdG formation progressively increased in 21% O2, whereas these oxidative injury markers showed little change at 1 and 5% O2 concentrations. hCPCs that were cultured at either 5% or 1% O2 demonstrated shorter doubling times with resultant higher cell yields during in vitro expansion. Conclusion: Culturing ckit+/Lin- hCPCs at lower oxygen tension minimizes oxidative damage, reduces senescence, and enhances proliferative potential during long-term culture; expansion at 1% ambient O2 appeared to be most effective. This relatively straightforward modification may further understanding of the biology of CPCs and their regenerative potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.