Abstract

Introduction: The activation of NF-κB is the dominant process that correlates with the pathogenesis of diabetic cardiomyopathy (DCM). Recently, accumulating evidence shows that long noncoding RNAs (lncRNAs) play crucial roles in sustaining the NF-κB pathway. However, the underlying mechanisms remain unclear. In this study, we identified the upregulated expressed lncRNA NBR2 in adipocyte-derived exosomes (AdEXO) and investigated its regulatory role in diabetic myocardial fibrosis. Hypothesis: We hypothesized that AdEXO-NBR2 promotes diabetic myocardial fibrosis through regulating the IκBα/NF-κB pathway. Methods: We examined the effect of exosomes from diabetic (db/db) mice-derived adipocytes on ANG-II-induced cardiac fibrosis and function in non-diabetic (C57BL/6J mice). In the invitro study, HG (33mmol/L)-stimulated AdEXO were cultured with adult human cardiac fibroblasts (aHCFs). Differentially expressed lncRNAs in AdEXO were screened using lncRNA sequencing. Results: Intramyocardial injection of diabetic AdEXO in the non-diabetic heart significantly exacerbated myocardial fibrosis, as evidenced by poorer cardiac function and enhancer collagen deposition. Whereas administration of a exosomes biogenesis inhibitor mitigated cardiac fibrosis in diabetic mice. We found lncRNA-NBR2 is a common molecule significantly increased in diabetic AdEXO and HG-stimulated non-diabetic AdEXO. After four weeks of ANG II infusion, EXO-db/dbWT-injected mice displayed fibrosis in the heart. However, interestingly, mice receiving NBR2-deficient db/db-EXO showed a decrease in cardiac fibrosis. Similarly, AdEXO-NBR2 promoted aHCFs proliferation and transformation capabilities in vitro. Mechanistically, NBR2 was loaded to AdEXO by directly interacting with heterogeneous nuclear ribonucleoprotein K (hnRNPK). Subsequently, AdEXO-NBR2 was internalized by aHCFs and epigenetically downregulated IκBα expression by recruitment of hnRNPK/SETDB1 and increasing the H3K9 trimethylation level in the IκBα promoter, ultimately activating the NF-κB pathway. Conclusions: Our findings highlight a novel epigenetic mechanism of AdEXO lncRNA-mediated diabetic cardiac fibrosis and identify NBR2 as a therapeutic target of DCM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call