Abstract

Background and objective: Doxorubicin is a chemotherapeutic drug widely used to treat variety of cancers. One of the serious side effects of doxorubicin is its toxicity to the heart. Previously, we have shown that overexpression of SIRT3 blocks the hypertrophic response of the heart to agonist treatments. This study was undertaken to investigate whether SIRT3 can also attenuate the doxorubicin-induced cardiac hypertrophic response in mice. Methods and results: Neonatal rat cardiomyocytes overexpressed with SIRT3 and treated with doxorubicin (10μM) showed 28% reduced mean fluorescent intensity for CM-H 2 DCFDA dye, compared to mock infected control cells treated with doxorubicin, thus suggesting that SIRT3 was capable of blocking doxorubicin-induced ROS synthesis in cardiomyocytes. To examine the cardioprotective effects of SIRT3 in doxorubicin-induced cardiotoxicity in vivo ; we used a cumulative dose of 15mg/kg of doxorubicin for two different time points. One group of mice was treated intraperitoneally with 5mg/kg doxorubicin or an equal volume of saline every two weeks for a total of three doses. Transgenic mice having cardiac specific expression of SIRT3 (SIRT3-Tg) showed 33% reduced HW/BW ratio compared to control mice. Echocardiographic evaluation of hearts showed significantly reduced fractional shortening in control mice, compared to SIRT3-Tg mice (24.6 vs 34.7 %, P<0.05). SIRT3-Tg mice also showed significantly reduced fetal gene expression for ANF, βMHC and collagen-1 as determined by RT-PCR. Masson’s trichrome staining showed significantly reduced fibrosis in doxorubicin treated SIRT3-Tg mice compared to its control. Furthermore, electron microscopic analysis showed preserved mitochondrial and sarcomeres structures in doxorubicin treated SIRT3-Tg hearts, whereas in wild-type hearts these structures were highly disorganized. Second group of mice that received 15mg/kg dose for two weeks also showed similar results. Contrary to this, whole body SIRT3 knockout mice showed exacerbated cardiac hypertrophic response compared to wild-type mice in response to doxorubicin treatment. Conclusion: These results demonstrated that SIRT3 is an endogenous negative regulator of doxorubicin-induced cardiac hypertrophic response.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call