Abstract
Introduction: Extracorporeal membrane oxygenation (ECMO) assisted CPR (ECPR) can improve outcomes after prolonged or unsuccessful resuscitative efforts, but neurological injury remains common in survivors. The lack of routine neuromonitoring during ECPR and ECMO prohibits brain-targeted management to help improve neurological outcomes. In this study, we examine the association of non-invasive, frequency-domain diffuse optical spectroscopy (FD-DOS) measurements of cerebral tissue oxygen extraction fraction (OEF), an indicator of metabolic stress, with invasively collected brain injury biomarkers to explore the utility of this monitoring modality during ECPR. Hypothesis: FD-DOS measurement of cerebral OEF is positively correlated with biomarkers of brain injury (lactate-pyruvate ratio, LPR; glycerol). Methods: Cerebral OEF was continuously monitored by FD-DOS in nine pediatric swine (8-11 kg) who underwent 30-60 minutes of manual CPR, were cannulated for ECMO, and remained on ECMO for 22-24 hours. Cerebral pyruvate, lactate, glycerol and glucose content were measured from cerebral microdialysate samples collected hourly. The correlation between OEF and microdialysis parameters were assessed using a linear mixed-effects model incorporating subject-specific random slope and intercept effects. Significance was determined at p<0.05. Results: Microdialysis parameters from 192 samples were compared against non-invasive OEF values. OEF was significantly correlated with LPR (p=0.001), and relative change in glycerol (p=0.005) and glucose (p=0.020) concentrations from baseline. Conclusions: Non-invasive FD-DOS neuromonitoring of OEF demonstrated significant correlations with invasive brain injury biomarkers; increasing OEF was associated with elevated LPR and glycerol, and diminished glucose. FD-DOS detection of critical neurometabolic stress at the bedside may facilitate brain-targeted ECMO management after cardiac arrest.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.